BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22459056)

  • 1. The influence of bone cement type on production of fretting wear on the femoral stem surface: a preliminary study.
    Zhang HY; Blunt LA; Jiang XQ; Fleming LT; Barrans SM
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):666-72. PubMed ID: 22459056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproduction of fretting wear at the stem-cement interface in total hip replacement.
    Brown L; Zhang H; Blunt L; Barrans S
    Proc Inst Mech Eng H; 2007 Nov; 221(8):963-71. PubMed ID: 18161257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of relative micromotion at the stem-cement interface in total hip replacement.
    Zhang HY; Brown L; Barrans S; Blunt L; Jiang XQ
    Proc Inst Mech Eng H; 2009 Nov; 223(8):955-64. PubMed ID: 20092093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanical effect of the existing cement mantle on the in-cement femoral revision.
    Keeling P; Lennon AB; Kenny PJ; O'Reilly P; Prendergast PJ
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):673-9. PubMed ID: 22503808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cement particles containing radio-opacifiers stimulate pro-osteolytic cytokine production from a human monocytic cell line.
    Shardlow DL; Stone MH; Ingham E; Fisher J
    J Bone Joint Surg Br; 2003 Aug; 85(6):900-5. PubMed ID: 12931816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.
    Zhang L; Ge S; Liu H; Wang Q; Wang L; Xian CJ
    J Mech Behav Biomed Mater; 2015 Nov; 51():132-46. PubMed ID: 26241891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotribological properties at the stem-cement interface lubricated with different media.
    Zhang HY; Luo JB; Zhou M; Zhang Y; Huang YL
    J Mech Behav Biomed Mater; 2013 Apr; 20():209-16. PubMed ID: 23518686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The significance of the micropores at the stem-cement interface in total hip replacement.
    Zhang H; Blunt L; Jiang X; Brown L; Barrans S
    J Biomater Sci Polym Ed; 2011; 22(7):845-56. PubMed ID: 21144164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of an amphiphilic bonder in a goat model to increase the femoral cement-bone adhesion in cemented hip arthroplasty].
    Müller-Rath R; Wirtz D; Andereya S; Gravius S; Hermanns-Sachweh B; Marx R; Mumme T
    Z Orthop Unfall; 2007; 145(4):476-82. PubMed ID: 17912668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of protein concentration on the biotribological properties of the stem-cement interface.
    Zhang HY; Zhou M
    Biomed Mater Eng; 2014; 24(1):173-9. PubMed ID: 24211896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New polymer materials in total hip arthroplasty. Evaluation with radiostereometry, bone densitometry, radiography and clinical parameters.
    Digas G
    Acta Orthop Suppl; 2005 Feb; 76(315):3-82. PubMed ID: 15790289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris.
    Davidson JA; Poggie RA; Mishra AK
    Biomed Mater Eng; 1994; 4(3):213-29. PubMed ID: 7950870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.
    Janssen D; Mann KA; Verdonschot N
    J Biomech; 2008 Nov; 41(15):3158-63. PubMed ID: 18848699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of human osteoblasts exposed to wear particles generated at the interface of total hip stems and bone cement.
    Lenz R; Mittelmeier W; Hansmann D; Brem R; Diehl P; Fritsche A; Bader R
    J Biomed Mater Res A; 2009 May; 89(2):370-8. PubMed ID: 18431768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of time in-situ and implant type on fixation strength of cemented tibial trays - a post mortem retrieval analysis.
    Gebert de Uhlenbrock A; Püschel V; Püschel K; Morlock MM; Bishop NE
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):929-35. PubMed ID: 22819669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro cyclic testing of the Exeter stem after cement within cement revision.
    Wilson LJ; Bell CG; Weinrauch P; Crawford R
    J Arthroplasty; 2009 Aug; 24(5):789-94. PubMed ID: 18534400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo surface wear mechanisms of femoral components of cemented total hip arthroplasties: the influence of wear mechanism on clinical outcome.
    Howell JR; Blunt LA; Doyle C; Hooper RM; Lee AJ; Ling RS
    J Arthroplasty; 2004 Jan; 19(1):88-101. PubMed ID: 14716656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface.
    Zhang H; Brown LT; Blunt LA; Barrans SM
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):96-104. PubMed ID: 19627775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.