These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2245911)

  • 21. Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae.
    Hagen DC; McCaffrey G; Sprague GF
    Mol Cell Biol; 1991 Jun; 11(6):2952-61. PubMed ID: 1903837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple regulation of STE2, a mating-type-specific gene of Saccharomyces cerevisiae.
    Hartig A; Holly J; Saari G; MacKay VL
    Mol Cell Biol; 1986 Jun; 6(6):2106-14. PubMed ID: 3023919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae.
    McCaffrey G; Clay FJ; Kelsay K; Sprague GF
    Mol Cell Biol; 1987 Aug; 7(8):2680-90. PubMed ID: 3313002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of expression of mammalian G alpha and hybrid mammalian-yeast G alpha proteins on the yeast pheromone response signal transduction pathway.
    Kang YS; Kane J; Kurjan J; Stadel JM; Tipper DJ
    Mol Cell Biol; 1990 Jun; 10(6):2582-90. PubMed ID: 2111439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STE50, a novel gene required for activation of conjugation at an early step in mating in Saccharomyces cerevisiae.
    Rad MR; Xu G; Hollenberg CP
    Mol Gen Genet; 1992 Dec; 236(1):145-54. PubMed ID: 1494345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone.
    Schrick K; Garvik B; Hartwell LH
    Genetics; 1997 Sep; 147(1):19-32. PubMed ID: 9286665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae.
    Shuster JR
    Mol Cell Biol; 1982 Sep; 2(9):1052-63. PubMed ID: 6757719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae.
    Ramer SW; Davis RW
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):452-6. PubMed ID: 8421676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase.
    Cairns BR; Ramer SW; Kornberg RD
    Genes Dev; 1992 Jul; 6(7):1305-18. PubMed ID: 1628833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutagenesis of Ste18, a putative G gamma subunit in the Saccharomyces cerevisiae pheromone response pathway.
    Whiteway M; Dignard D; Thomas DY
    Biochem Cell Biol; 1992; 70(10-11):1230-7. PubMed ID: 1297344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone.
    Hartwell LH
    J Cell Biol; 1980 Jun; 85(3):811-22. PubMed ID: 6993497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Function of the STE4 and STE18 genes in mating pheromone signal transduction in Saccharomyces cerevisiae.
    Whiteway M; Hougan L; Dignard D; Bell L; Saari G; Grant F; O'Hara P; MacKay VL; Thomas DY
    Cold Spring Harb Symp Quant Biol; 1988; 53 Pt 2():585-90. PubMed ID: 3151178
    [No Abstract]   [Full Text] [Related]  

  • 33. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway.
    Cross FR
    Mol Cell Biol; 1990 Dec; 10(12):6482-90. PubMed ID: 2147225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Function of the ste signal transduction pathway for mating pheromones sustains MAT alpha 1 transcription in Saccharomyces cerevisiae.
    Mukai Y; Harashima S; Oshima Y
    Mol Cell Biol; 1993 Apr; 13(4):2050-60. PubMed ID: 8455598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substitutions in the pheromone-responsive Gbeta protein of Saccharomyces cerevisiae confer a defect in recovery from pheromone treatment.
    Li E; Meldrum E; Stratton HF; Stone DE
    Genetics; 1998 Mar; 148(3):947-61. PubMed ID: 9539416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit.
    Spain BH; Koo D; Ramakrishnan M; Dzudzor B; Colicelli J
    J Biol Chem; 1995 Oct; 270(43):25435-44. PubMed ID: 7592711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones.
    Chan RK; Otte CA
    Mol Cell Biol; 1982 Jan; 2(1):11-20. PubMed ID: 7050665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle.
    Oehlen LJ; Cross FR
    Genes Dev; 1994 May; 8(9):1058-70. PubMed ID: 7926787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of postreceptor signaling in the pheromone response pathway of Saccharomyces cerevisiae.
    Blinder D; Jenness DD
    Mol Cell Biol; 1989 Sep; 9(9):3720-6. PubMed ID: 2550799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae.
    Kao LR; Peterson J; Ji R; Bender L; Bender A
    Mol Cell Biol; 1996 Jan; 16(1):168-78. PubMed ID: 8524293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.