BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22459131)

  • 1. Chaperone-dependent mechanisms for acid resistance in enteric bacteria.
    Hong W; Wu YE; Fu X; Chang Z
    Trends Microbiol; 2012 Jul; 20(7):328-35. PubMed ID: 22459131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria.
    Wu YE; Hong W; Liu C; Zhang L; Chang Z
    Biochem J; 2008 Jun; 412(2):389-97. PubMed ID: 18271752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HdeB functions as an acid-protective chaperone in bacteria.
    Dahl JU; Koldewey P; Salmon L; Horowitz S; Bardwell JC; Jakob U
    J Biol Chem; 2015 Jan; 290(1):65-75. PubMed ID: 25391835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli HdeB is an acid stress chaperone.
    Kern R; Malki A; Abdallah J; Tagourti J; Richarme G
    J Bacteriol; 2007 Jan; 189(2):603-10. PubMed ID: 17085547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria.
    Gajiwala KS; Burley SK
    J Mol Biol; 2000 Jan; 295(3):605-12. PubMed ID: 10623550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary silence of the acid chaperone protein HdeB in enterohemorrhagic Escherichia coli O157:H7.
    Carter MQ; Louie JW; Fagerquist CK; Sultan O; Miller WG; Mandrell RE
    Appl Environ Microbiol; 2012 Feb; 78(4):1004-14. PubMed ID: 22179243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance.
    Zhang S; He D; Yang Y; Lin S; Zhang M; Dai S; Chen PR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10872-7. PubMed ID: 27621474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HdeB chaperone activity is coupled to its intrinsic dynamic properties.
    Ding J; Yang C; Niu X; Hu Y; Jin C
    Sci Rep; 2015 Nov; 5():16856. PubMed ID: 26593705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.
    Malki A; Le HT; Milles S; Kern R; Caldas T; Abdallah J; Richarme G
    J Biol Chem; 2008 May; 283(20):13679-87. PubMed ID: 18359765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers.
    Zhang S; He D; Lin Z; Yang Y; Song H; Chen PR
    Acc Chem Res; 2017 May; 50(5):1184-1192. PubMed ID: 28467057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chaperone-Active State of HdeB at pH 4 Arises from Its Conformational Rearrangement and Enhanced Stability Instead of Surface Hydrophobicity.
    Thapliyal C; Mishra R
    Biochemistry; 2024 May; 63(9):1147-1161. PubMed ID: 38640496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance.
    Zhang M; Lin S; Song X; Liu J; Fu Y; Ge X; Fu X; Chang Z; Chen PR
    Nat Chem Biol; 2011 Sep; 7(10):671-7. PubMed ID: 21892184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizations of the Interactions between Escherichia coli Periplasmic Chaperone HdeA and Its Native Substrates during Acid Stress.
    Yu XC; Yang C; Ding J; Niu X; Hu Y; Jin C
    Biochemistry; 2017 Oct; 56(43):5748-5757. PubMed ID: 29016106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modeling of a conditionally disordered pH-sensing chaperone.
    Ahlstrom LS; Law SM; Dickson A; Brooks CL
    J Mol Biol; 2015 Apr; 427(8):1670-80. PubMed ID: 25584862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Fibrils by the Periplasmic Molecular Chaperone HdeB from
    Nakata Y; Kitazaki Y; Kanaoka H; Shingen E; Uehara R; Hongo K; Kawata Y; Mizobata T
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function.
    Wang W; Rasmussen T; Harding AJ; Booth NA; Booth IR; Naismith JH
    J Mol Biol; 2012 Jan; 415(3):538-46. PubMed ID: 22138344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Mechanism of HdeA Unfolding and Chaperone Activation.
    Salmon L; Stull F; Sayle S; Cato C; Akgül Ş; Foit L; Ahlstrom LS; Eisenmesser EZ; Al-Hashimi HM; Bardwell JCA; Horowitz S
    J Mol Biol; 2018 Jan; 430(1):33-40. PubMed ID: 29138002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR.
    Appia-Ayme C; Hall A; Patrick E; Rajadurai S; Clarke TA; Rowley G
    Biochem J; 2012 Feb; 442(1):85-93. PubMed ID: 22084975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation.
    Garrison MA; Crowhurst KA
    Protein Sci; 2014 Feb; 23(2):167-78. PubMed ID: 24375557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-denatured small heat shock protein HdeA from
    Miyawaki S; Uemura Y; Hongo K; Kawata Y; Mizobata T
    J Biol Chem; 2019 Feb; 294(5):1590-1601. PubMed ID: 30530490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.