BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22459192)

  • 1. The effects of intrathecal injection of a hyaluronan-based hydrogel on inflammation, scarring and neurobehavioural outcomes in a rat model of severe spinal cord injury associated with arachnoiditis.
    Austin JW; Kang CE; Baumann MD; DiDiodato L; Satkunendrarajah K; Wilson JR; Stanisz GJ; Shoichet MS; Fehlings MG
    Biomaterials; 2012 Jun; 33(18):4555-64. PubMed ID: 22459192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between localized subarachnoid inflammation and parenchymal pathophysiology after spinal cord injury.
    Austin JW; Afshar M; Fehlings MG
    J Neurotrauma; 2012 Jul; 29(10):1838-49. PubMed ID: 22655536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury.
    Kang CE; Baumann MD; Tator CH; Shoichet MS
    Cells Tissues Organs; 2013; 197(1):55-63. PubMed ID: 22796886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.
    Mothe AJ; Tam RY; Zahir T; Tator CH; Shoichet MS
    Biomaterials; 2013 May; 34(15):3775-83. PubMed ID: 23465486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.
    Khaing ZZ; Milman BD; Vanscoy JE; Seidlits SK; Grill RJ; Schmidt CE
    J Neural Eng; 2011 Aug; 8(4):046033. PubMed ID: 21753237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury.
    He Z; Zang H; Zhu L; Huang K; Yi T; Zhang S; Cheng S
    Int J Nanomedicine; 2019; 14():721-732. PubMed ID: 30705588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury.
    Liu Y; Ye H; Satkunendrarajah K; Yao GS; Bayon Y; Fehlings MG
    Acta Biomater; 2013 Sep; 9(9):8075-88. PubMed ID: 23770224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into posttraumatic syringomyelia based on a novel in vivo animal model. Laboratory investigation.
    Seki T; Fehlings MG
    J Neurosurg Spine; 2008 Apr; 8(4):365-75. PubMed ID: 18377322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury.
    Baumann MD; Kang CE; Tator CH; Shoichet MS
    Biomaterials; 2010 Oct; 31(30):7631-9. PubMed ID: 20656347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study.
    Bilston LE; Fletcher DF; Stoodley MA
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):579-84. PubMed ID: 16530899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia.
    Brodbelt AR; Stoodley MA; Watling AM; Tu J; Burke S; Jones NR
    Spine (Phila Pa 1976); 2003 Oct; 28(20):E413-9. PubMed ID: 14560096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitotoxic model of post-traumatic syringomyelia in the rat.
    Yang L; Jones NR; Stoodley MA; Blumbergs PC; Brown CJ
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1842-9. PubMed ID: 11568692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical features and pathomechanisms of syringomyelia associated with spinal arachnoiditis.
    Koyanagi I; Iwasaki Y; Hida K; Houkin K
    Surg Neurol; 2005 Apr; 63(4):350-5; discussion 355-6. PubMed ID: 15808720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical postlaminectomy rat model.
    Schimizzi AL; Massie JB; Murphy M; Perry A; Kim CW; Garfin SR; Akeson WH
    Spine J; 2006; 6(5):550-6. PubMed ID: 16934726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrathecal drug delivery strategy is safe and efficacious for localized delivery to the spinal cord.
    Shoichet MS; Tator CH; Poon P; Kang C; Baumann MD
    Prog Brain Res; 2007; 161():385-92. PubMed ID: 17618992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topical high-molecular-weight hyaluronan and a roofing barrier sheet equally inhibit postlaminectomy fibrosis.
    Akeson WH; Massie JB; Huang B; Giurea A; Sah R; Garfin SR; Kim CW
    Spine J; 2005; 5(2):180-90. PubMed ID: 15749618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair.
    Kang CE; Poon PC; Tator CH; Shoichet MS
    Tissue Eng Part A; 2009 Mar; 15(3):595-604. PubMed ID: 18991489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord.
    Gupta D; Tator CH; Shoichet MS
    Biomaterials; 2006 Apr; 27(11):2370-9. PubMed ID: 16325904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats.
    Ritz MF; Hausmann ON
    Brain Res; 2008 Apr; 1203():177-88. PubMed ID: 18316064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.