These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 22459252)
1. Effects of heat treatment on evolution of microstructure of boron free and boron containing biomedical Ti-13Zr-13Nb alloys. Majumdar P Micron; 2012 Aug; 43(8):876-86. PubMed ID: 22459252 [TBL] [Abstract][Full Text] [Related]
2. Corrosion behaviour of heat treated boron free and boron containing Ti-13Zr-13Nb (wt%) alloy in simulated body fluid. Majumdar P; Singh SB; Chatterjee UK; Chakraborty M J Mater Sci Mater Med; 2011 Apr; 22(4):797-807. PubMed ID: 21442191 [TBL] [Abstract][Full Text] [Related]
3. The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications. Majumdar P; Singh SB; Chakraborty M J Mech Behav Biomed Mater; 2011 Oct; 4(7):1132-44. PubMed ID: 21783122 [TBL] [Abstract][Full Text] [Related]
4. Influence of boron addition to Ti-13Zr-13Nb alloy on MG63 osteoblast cell viability and protein adsorption. Majumdar P; Singh SB; Dhara S; Chakraborty M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():62-8. PubMed ID: 25491960 [TBL] [Abstract][Full Text] [Related]
5. Microstructural evaluation of boron free and boron containing heat-treated Ti-35Nb-7.2Zr-5.7Ta alloy. Majumdar P Microsc Microanal; 2012 Apr; 18(2):295-303. PubMed ID: 22380732 [TBL] [Abstract][Full Text] [Related]
6. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy. Cook SD; Thongpreda N; Anderson RC; Haddad RJ J Biomed Mater Res; 1988 Apr; 22(4):287-302. PubMed ID: 3372550 [TBL] [Abstract][Full Text] [Related]
7. Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling. Shi A; Cai D; Hu J; Zhao X; Qin G; Han Y; Zhang E Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112116. PubMed ID: 34082933 [TBL] [Abstract][Full Text] [Related]
8. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy. Park CH; Lee CS; Kim YJ; Jang JH; Suh JY; Park JW Clin Oral Implants Res; 2011 Jul; 22(7):735-742. PubMed ID: 21121961 [TBL] [Abstract][Full Text] [Related]
9. Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β Ti-alloys. Majumdar P; Singh SB; Dhara S; Chakraborty M J Mech Behav Biomed Mater; 2012 Jun; 10():1-12. PubMed ID: 22520414 [TBL] [Abstract][Full Text] [Related]
10. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty. Davidson JA; Mishra AK; Kovacs P; Poggie RA Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871 [TBL] [Abstract][Full Text] [Related]
11. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes. Gabriel SB; de Almeida LH; Nunes CA; Dille J; Soares GA Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3319-24. PubMed ID: 23706216 [TBL] [Abstract][Full Text] [Related]
13. Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation. Michalska J; Sowa M; Piotrowska M; Widziołek M; Tylko G; Dercz G; Socha RP; Osyczka AM; Simka W Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109957. PubMed ID: 31500028 [TBL] [Abstract][Full Text] [Related]
14. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications. Hu H; Zhang L; He Z; Jiang Y; Tan J Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028 [TBL] [Abstract][Full Text] [Related]
15. Mechanical response and microstructural evolution of Ti-13Zr-13Nb biomedical alloy under high strain rate load. Chen TH; Lin SY Technol Health Care; 2015; 24 Suppl 1():S171-7. PubMed ID: 26409553 [TBL] [Abstract][Full Text] [Related]
16. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection. Aguilera-Correa JJ; Conde A; Arenas MA; de-Damborenea JJ; Marin M; Doadrio AL; Esteban J Biomed Mater; 2017 Aug; 12(4):045022. PubMed ID: 28799523 [TBL] [Abstract][Full Text] [Related]
17. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy. Bobbili R; Madhu V J Mech Behav Biomed Mater; 2016 Jun; 59():146-155. PubMed ID: 26766326 [TBL] [Abstract][Full Text] [Related]
18. Tribological and corrosion behaviors of warm-and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions. Lee T; Mathew E; Rajaraman S; Manivasagam G; Singh AK; Lee CS Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):207-12. PubMed ID: 26491322 [TBL] [Abstract][Full Text] [Related]
19. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Li SJ; Cui TC; Hao YL; Yang R Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397 [TBL] [Abstract][Full Text] [Related]
20. Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition. Baker MA; Assis SL; Higa OZ; Costa I Acta Biomater; 2009 Jan; 5(1):63-75. PubMed ID: 18815081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]