These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22459599)

  • 21. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices.
    Buschman TJ; Miller EK
    Science; 2007 Mar; 315(5820):1860-2. PubMed ID: 17395832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age differences in the frontoparietal cognitive control network: implications for distractibility.
    Campbell KL; Grady CL; Ng C; Hasher L
    Neuropsychologia; 2012 Jul; 50(9):2212-23. PubMed ID: 22659108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of frontal and parietal neuronal activity by visuomotor learning. An ERP analysis of implicit and explicit pursuit tracking tasks.
    Hill H
    Int J Psychophysiol; 2014 Mar; 91(3):212-24. PubMed ID: 24373887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching.
    Misselhorn J; Friese U; Engel AK
    Sci Rep; 2019 Mar; 9(1):5030. PubMed ID: 30903012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks.
    Katsuki F; Saito M; Constantinidis C
    Eur J Neurosci; 2014 Sep; 40(6):2910-21. PubMed ID: 24964224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An overview of age-related changes in the scalp distribution of P3b.
    Friedman D; Kazmerski V; Fabiani M
    Electroencephalogr Clin Neurophysiol; 1997 Nov; 104(6):498-513. PubMed ID: 9402892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological evidence for cognitive control during conflict processing in visual spatial attention.
    Kehrer S; Kraft A; Irlbacher K; Koch SP; Hagendorf H; Kathmann N; Brandt SA
    Psychol Res; 2009 Nov; 73(6):751-61. PubMed ID: 19050912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple identity tracking strategies vary by age: An ERP study.
    Pehlivanoglu D; Duarte A; Verhaeghen P
    Neuropsychologia; 2020 Feb; 138():107357. PubMed ID: 31982481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for frontally mediated controlled processing differences in older adults.
    Velanova K; Lustig C; Jacoby LL; Buckner RL
    Cereb Cortex; 2007 May; 17(5):1033-46. PubMed ID: 16774962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frontal and parietal components of a cerebral network mediating voluntary attention to novel events.
    Daffner KR; Scinto LF; Weitzman AM; Faust R; Rentz DM; Budson AE; Holcomb PJ
    J Cogn Neurosci; 2003 Feb; 15(2):294-313. PubMed ID: 12683359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.
    Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T
    Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The involvement of posterior parietal cortex and frontal eye fields in spatially primed visual search.
    Lane AR; Smith DT; Schenk T; Ellison A
    Brain Stimul; 2012 Jan; 5(1):11-7. PubMed ID: 22037138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impairments in top down attentional processes in right parietal patients: paradoxical functional facilitation in visual search.
    Mangano GR; Oliveri M; Turriziani P; Smirni D; Zhaoping L; Cipolotti L
    Vision Res; 2014 Apr; 97():74-82. PubMed ID: 24582796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of aging on processes underlying task switching.
    West R; Travers S
    Brain Cogn; 2008 Oct; 68(1):67-80. PubMed ID: 18403080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.
    Nelissen N; Stokes M; Nobre AC; Rushworth MF
    J Neurosci; 2013 Oct; 33(42):16443-58. PubMed ID: 24133250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control mechanisms mediating shifts of attention in auditory and visual space: a spatio-temporal ERP analysis.
    Green JJ; Teder-Sälejärvi WA; McDonald JJ
    Exp Brain Res; 2005 Oct; 166(3-4):358-69. PubMed ID: 16075294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study.
    Madden DJ; Spaniol J; Whiting WL; Bucur B; Provenzale JM; Cabeza R; White LE; Huettel SA
    Neurobiol Aging; 2007 Mar; 28(3):459-76. PubMed ID: 16500004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes.
    Anderer P; Semlitsch HV; Saletu B
    Electroencephalogr Clin Neurophysiol; 1996 Nov; 99(5):458-72. PubMed ID: 9020805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Think differently: a brain orienting response to task novelty.
    Barceló F; Periáñez JA; Knight RT
    Neuroreport; 2002 Oct; 13(15):1887-92. PubMed ID: 12395085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.