These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 224598)

  • 21. Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase.
    Sun QA; Su D; Novoselov SV; Carlson BA; Hatfield DL; Gladyshev VN
    Biochemistry; 2005 Nov; 44(44):14528-37. PubMed ID: 16262253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased NADH-oxidoreductase activities as an early response in rat liver to the carcinogen 2-acetylaminofluorene.
    Sun I; MacKellar WC; Crane FL; Barr R; Elliott WL; Lem N; Varnold RL; Heinstein PF; Morré DJ
    Cancer Res; 1985 Jan; 45(1):157-63. PubMed ID: 3965129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Ubiquinone content and the oxidative-reductive enzymatic system activity in the liver of vitamin E-deficient rats administered alpha-tocopherol and its chlorine derivative].
    Donchenko GV; Kuz'menko IV; Kovalenko VN; Basalkevich ED; Koliadenko EV
    Vopr Med Khim; 1981; 27(5):707-10. PubMed ID: 6797129
    [No Abstract]   [Full Text] [Related]  

  • 24. [Inhibition of NADH-dehydrogenase by low concentrations of NAD+].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Dec; 56(12):2253-60. PubMed ID: 1807407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of nicotinic acid and nicotinamide on the activity of NADPH- and NADH-dependent redox chains in rat liver endoplasmic reticulum].
    Lukienko PI; Bushma MI
    Farmakol Toksikol; 1982; 45(2):78-81. PubMed ID: 6210571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mechanism and regulation of NADPH ferredoxin reductase in Clostridium kluyveri].
    Rupprecht E; Thauer RK
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):416-9. PubMed ID: 4145615
    [No Abstract]   [Full Text] [Related]  

  • 27. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury.
    van de Water B; Zoeteweij JP; de Bont HJ; Nagelkerke JF
    Mol Pharmacol; 1995 Nov; 48(5):928-37. PubMed ID: 7476924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rat splenic D-T diaphorase and NAD(P)H-nitroblue tetrazolium reductase. Their use to assess the action of polycyclic hydrocarbons in the lymphatic system.
    Schor NA; Stedman RB; Epstein N; Schally G
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1982; 41(1-2):83-93. PubMed ID: 6134386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity.
    De Flora S; Morelli A; Basso C; Romano M; Serra D; De Flora A
    Cancer Res; 1985 Jul; 45(7):3188-96. PubMed ID: 4005852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in biochemical and physiological indices in animals produced by the combined effect of benz [a] pyrene and phenol.
    Skvortsova NN; Vysochina IV
    Environ Health Perspect; 1976 Feb; 13():101-6. PubMed ID: 1269494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate and position specificity of hematin-activated monooxygenation reactions.
    Omiecinski CJ; Namkung MJ; Juchau MR
    Biochem Pharmacol; 1981 Oct; 30(20):2837-45. PubMed ID: 7317078
    [No Abstract]   [Full Text] [Related]  

  • 35. Influence of 3,4-benzo(a)pyrene on warfarin hypoprothrombinemia and disposition in the rat.
    Bachmann K; Tarloff J
    Toxicol Appl Pharmacol; 1977 Oct; 42(1):157-65. PubMed ID: 929599
    [No Abstract]   [Full Text] [Related]  

  • 36. Solubilization of benz(alpha) pyrene by transfer ribonucleic acid of normal and tumour tissues.
    Vescia A; Giordano GG; Hermann G
    J Mol Biol; 1968 May; 33(3):625-34. PubMed ID: 5700416
    [No Abstract]   [Full Text] [Related]  

  • 37. Oxidized metabolites of 7-methylbenzo[a]pyrene.
    Konieczny M; Harvey RG
    Carcinogenesis; 1982; 3(5):573-5. PubMed ID: 7094215
    [No Abstract]   [Full Text] [Related]  

  • 38. [Distribution of the reducing equivalents in the cell in the active phase of benz(a)pyrene metabolism].
    Dmitriev LF; Ivanov II
    Vopr Med Khim; 1979; 25(4):451-5. PubMed ID: 224598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [NADPH- and NADH-dependent benz(a)pyrene hydroxylating system. II. Relationship to lipid peroxidation].
    Belevich NP; Dmitriev LF; Ivanov II
    Biull Eksp Biol Med; 1981 Feb; 91(2):158-60. PubMed ID: 7225548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.