These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22459807)

  • 1. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration.
    Piry A; Heino A; Kühnl W; Grein T; Ripperger S; Kulozik U
    J Dairy Sci; 2012 Apr; 95(4):1590-602. PubMed ID: 22459807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.
    Jørgensen CE; Abrahamsen RK; Rukke EO; Johansen AG; Schüller RB; Skeie SB
    J Dairy Sci; 2016 Aug; 99(8):6164-6179. PubMed ID: 27265169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of microfiltration concentration factor on serum protein removal from skim milk using spiral-wound polymeric membranes.
    Beckman SL; Barbano DM
    J Dairy Sci; 2013 Oct; 96(10):6199-212. PubMed ID: 23891300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes.
    Mercier-Bouchard D; Benoit S; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2017 Nov; 100(11):8838-8848. PubMed ID: 28843690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of caseins from whey proteins by microfiltration modifying the mineral balance in skim milk.
    Hernández A; Harte FM
    J Dairy Sci; 2009 Nov; 92(11):5357-62. PubMed ID: 19841195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physicochemical investigation of membrane fouling in cold microfiltration of skim milk.
    Tan TJ; Wang D; Moraru CI
    J Dairy Sci; 2014; 97(8):4759-71. PubMed ID: 24881794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of beta-lactoglobulin A and B whey protein variants on the rennet-induced gelation of skim milk gels in a model reconstituted skim milk system.
    Meza-Nieto MA; Vallejo-Cordoba B; González-Córdova AF; Félix L; Goycoolea FM
    J Dairy Sci; 2007 Feb; 90(2):582-93. PubMed ID: 17235134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.
    Zulewska J; Barbano DM
    J Dairy Sci; 2014 May; 97(5):2619-32. PubMed ID: 24612815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems.
    Wang L; Hayes KD; Mauer LJ
    J Dairy Sci; 2006 Jan; 89(1):58-70. PubMed ID: 16357268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum protein removal from skim milk with a 3-stage, 3× ceramic Isoflux membrane process at 50°C.
    Adams MC; Barbano DM
    J Dairy Sci; 2013 Apr; 96(4):2020-2034. PubMed ID: 23415524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.
    Zulewska J; Newbold M; Barbano DM
    J Dairy Sci; 2009 Apr; 92(4):1361-77. PubMed ID: 19307617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment.
    Lee S; Park PK; Kim JH; Yeon KM; Lee CH
    Water Res; 2008 Jun; 42(12):3109-21. PubMed ID: 18387649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.
    Tremblay-Marchand D; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2016 Jul; 99(7):5230-5243. PubMed ID: 27132105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.
    Beckman SL; Zulewska J; Newbold M; Barbano DM
    J Dairy Sci; 2010 Oct; 93(10):4506-17. PubMed ID: 20854984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of copolymers of beta-lactoglobulin, alpha-lactalbumin, kappa-casein, and alphas1-casein generated by pressurization and thermal treatment of raw milk.
    Nabhan MA; Girardet JM; Campagna S; Gaillard JL; Le Roux Y
    J Dairy Sci; 2004 Nov; 87(11):3614-22. PubMed ID: 15483144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the fractionation of a whey protein isolate during dead-end membrane filtration using fluorescence and chemometric methods.
    Elshereef R; Budman H; Moresoli C; Legge RL
    Biotechnol Prog; 2010; 26(1):168-78. PubMed ID: 19856385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux and transmission of β-casein during cold microfiltration of skim milk subjected to different heat treatments.
    Zulewska J; Kowalik J; Dec B
    J Dairy Sci; 2018 Dec; 101(12):10831-10843. PubMed ID: 30268614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of skim milk treated with high hydrostatic pressure on permeate flux and fouling during ultrafiltration.
    Leu M; Marciniak A; Chamberland J; Pouliot Y; Bazinet L; Doyen A
    J Dairy Sci; 2017 Sep; 100(9):7071-7082. PubMed ID: 28647330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of casein on flux and passage of serum proteins during microfiltration using polymeric spiral-wound membranes at 50°C.
    Zulewska J; Barbano DM
    J Dairy Sci; 2013 Apr; 96(4):2048-2060. PubMed ID: 23415517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.