BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22460077)

  • 1. Posttranslational modification of indoleamine 2,3-dioxygenase.
    Fujigaki H; Seishima M; Saito K
    Anal Bioanal Chem; 2012 Jun; 403(7):1777-82. PubMed ID: 22460077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Human IDO1 Enzyme Activity by Using Genetically Encoded Nitrotyrosine.
    Zheng Z; Guo X; Yu M; Wang X; Lu H; Li F; Wang J
    Chembiochem; 2020 Jun; 21(11):1593-1596. PubMed ID: 31944493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and quantification of protein posttranslational modifications.
    Farley AR; Link AJ
    Methods Enzymol; 2009; 463():725-63. PubMed ID: 19892200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characteristics and inhibitor selectivity of mouse indoleamine 2,3-dioxygenase-2.
    Austin CJ; Mailu BM; Maghzal GJ; Sanchez-Perez A; Rahlfs S; Zocher K; Yuasa HJ; Arthur JW; Becker K; Stocker R; Hunt NH; Ball HJ
    Amino Acids; 2010 Jul; 39(2):565-78. PubMed ID: 20140689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The absence of indoleamine 2,3-dioxygenase expression protects against NMDA receptor-mediated excitotoxicity in mouse brain.
    Mazarei G; Budac DP; Lu G; Lee H; Möller T; Leavitt BR
    Exp Neurol; 2013 Nov; 249():144-8. PubMed ID: 23994717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low efficiency IDO2 enzymes are conserved in lower vertebrates, whereas higher efficiency IDO1 enzymes are dispensable.
    Yuasa HJ; Mizuno K; Ball HJ
    FEBS J; 2015 Jul; 282(14):2735-45. PubMed ID: 25950090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain.
    Thomas SN; Yang AJ
    Methods Mol Biol; 2017; 1523():161-177. PubMed ID: 27975250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecules in focus: indoleamine 2,3-dioxygenase.
    King NJ; Thomas SR
    Int J Biochem Cell Biol; 2007; 39(12):2167-72. PubMed ID: 17320464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of indoleamine 2,3-dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice.
    Takamatsu M; Hirata A; Ohtaki H; Hoshi M; Ando T; Ito H; Hatano Y; Tomita H; Kuno T; Saito K; Seishima M; Hara A
    Cancer Sci; 2015 Aug; 106(8):1008-15. PubMed ID: 26033215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global profiling of histone modifications in the polyomavirus BK virion minichromosome.
    Fang CY; Shen CH; Wang M; Chen PL; Chan MW; Hsu PH; Chang D
    Virology; 2015 Sep; 483():1-12. PubMed ID: 25958155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic screening of protein modifications in four kinases using affinity enrichment and mass spectrometry analysis with unrestrictive sequence alignment.
    Zhang K; Zhu Y; He X; Zhang Y
    Anal Chim Acta; 2011 Apr; 691(1-2):62-7. PubMed ID: 21458632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials.
    Yuasa HJ; Ball HJ; Ho YF; Austin CJ; Whittington CM; Belov K; Maghzal GJ; Jermiin LS; Hunt NH
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jun; 153(2):137-44. PubMed ID: 19402226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications.
    Shah B; Kozlowski RL; Han J; Borchers CH
    Methods Mol Biol; 2011; 773():259-303. PubMed ID: 21898261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of apolipoprotein-B-100 sequence coverage by liquid chromatography-tandem mass spectrometry for the future study of its posttranslational modifications.
    Delporte C; Van Antwerpen P; Zouaoui Boudjeltia K; Noyon C; Abts F; Métral F; Vanhamme L; Reyé F; Rousseau A; Vanhaeverbeek M; Ducobu J; Nève J
    Anal Biochem; 2011 Apr; 411(1):129-38. PubMed ID: 21129357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.
    Bashyal A; Brodbelt JS
    Mass Spectrom Rev; 2024; 43(2):289-326. PubMed ID: 36165040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research progress of indoleamine 2,3-dioxygenase inhibitors.
    Jiang T; Sun Y; Yin Z; Feng S; Sun L; Li Z
    Future Med Chem; 2015; 7(2):185-201. PubMed ID: 25686005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Phanerochaete chrysosporium secretome revealed protein glycosylation as a substrate-dependent post-translational modification.
    Adav SS; Ravindran A; Sze SK
    J Proteome Res; 2014 Oct; 13(10):4272-80. PubMed ID: 25162795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.