BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22460358)

  • 1. Optical mapping in the developing zebrafish heart.
    Sabeh MK; Kekhia H; Macrae CA
    Pediatr Cardiol; 2012 Aug; 33(6):916-22. PubMed ID: 22460358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation.
    Lin E; Craig C; Lamothe M; Sarunic MV; Beg MF; Tibbits GF
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R755-68. PubMed ID: 25740339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological phenotyping of the adult zebrafish heart.
    Lin E; Shafaattalab S; Gill J; Al-Zeer B; Craig C; Lamothe M; Rayani K; Gunawan M; Li AY; Hove-Madsen L; Tibbits GF
    Mar Genomics; 2020 Feb; 49():100701. PubMed ID: 31451352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish models in cardiac development and congenital heart birth defects.
    Tu S; Chi NC
    Differentiation; 2012 Jul; 84(1):4-16. PubMed ID: 22704690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Zebrafish Heart as a Model of Mammalian Cardiac Function.
    Genge CE; Lin E; Lee L; Sheng X; Rayani K; Gunawan M; Stevens CM; Li AY; Talab SS; Claydon TW; Hove-Madsen L; Tibbits GF
    Rev Physiol Biochem Pharmacol; 2016; 171():99-136. PubMed ID: 27538987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical measurement of neuronal activity in the developing cerebellum of zebrafish using voltage-sensitive dye imaging.
    Okumura K; Kakinuma H; Amo R; Okamoto H; Yamasu K; Tsuda S
    Neuroreport; 2018 Nov; 29(16):1349-1354. PubMed ID: 30192301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart.
    Werdich AA; Brzezinski A; Jeyaraj D; Khaled Sabeh M; Ficker E; Wan X; McDermott BM; Macrae CA; Rosenbaum DS
    Prog Biophys Mol Biol; 2012; 110(2-3):154-65. PubMed ID: 22835662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for analyzing cardiac phenotypes in the zebrafish embryo.
    Houk AR; Yelon D
    Methods Cell Biol; 2016; 134():335-68. PubMed ID: 27312497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparametric optical mapping of the Langendorff-perfused rabbit heart.
    Lou Q; Li W; Efimov IR
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21946767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical interrogation of neuronal circuitry in zebrafish using genetically encoded voltage indicators.
    Miyazawa H; Okumura K; Hiyoshi K; Maruyama K; Kakinuma H; Amo R; Okamoto H; Yamasu K; Tsuda S
    Sci Rep; 2018 Apr; 8(1):6048. PubMed ID: 29662090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury.
    Hein SJ; Lehmann LH; Kossack M; Juergensen L; Fuchs D; Katus HA; Hassel D
    PLoS One; 2015; 10(4):e0122665. PubMed ID: 25853735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical mapping of the pig heart in situ under artificial blood circulation.
    Martišienė I; Karčiauskas D; Navalinskas A; Mačianskienė R; Kučinskas A; Treinys R; Grigalevičiūtė R; Zigmantaitė V; Ralienė L; Benetis R; Jurevičius J
    Sci Rep; 2020 May; 10(1):8548. PubMed ID: 32444634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zebrafish as a model of cardiac disease.
    Wilkinson RN; Jopling C; van Eeden FJ
    Prog Mol Biol Transl Sci; 2014; 124():65-91. PubMed ID: 24751427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.
    Walton RD; Bernus O
    Adv Exp Med Biol; 2015; 859():405-23. PubMed ID: 26238062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-sensitive dye imaging of the visual cortices responding to electrical pulses at different intervals in mice in vivo.
    Hayashida Y; Takeuchi K; Ishikawa N; Okazaki Y; Tamas F; Tanaka H; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():402-5. PubMed ID: 25569981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of an Association between Age-Related Functional Modifications and Pathophysiological Changes in Zebrafish Heart.
    Sun Y; Fang Y; Xu X; Lu G; Chen Z
    Gerontology; 2015; 61(5):435-47. PubMed ID: 25531915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High precision and fast functional mapping of cortical circuitry through a novel combination of voltage sensitive dye imaging and laser scanning photostimulation.
    Xu X; Olivas ND; Levi R; Ikrar T; Nenadic Z
    J Neurophysiol; 2010 Apr; 103(4):2301-12. PubMed ID: 20130040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel system for mapping regional electrical properties and characterizing arrhythmia in isolated intact rat atria.
    Ramlugun GS; Sands GB; Zhao J; LeGrice IJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2021 Aug; 321(2):H412-H421. PubMed ID: 34213393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Mapping of Ventricular Fibrillation Dynamics.
    Park SA; Gray RA
    Adv Exp Med Biol; 2015; 859():313-42. PubMed ID: 26238059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.