These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22460547)

  • 1. Role of perisynaptic parameters in neurotransmitter homeostasis--computational study of a general synapse.
    Pendyam S; Mohan A; Kalivas PW; Nair SS
    Synapse; 2012 Jul; 66(7):608-21. PubMed ID: 22460547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular diffusion model of neurotransmitter homeostasis around synapses supporting gradients.
    Mohan A; Pendyam S; Kalivas PW; Nair SS
    Neural Comput; 2011 Apr; 23(4):984-1014. PubMed ID: 21222526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca(2+) depletion.
    Rusakov DA
    Biophys J; 2001 Oct; 81(4):1947-59. PubMed ID: 11566769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cleft glutamate concentration and glutamate spill-out by perisynaptic glia: uptake and diffusion barriers.
    Kessler JP
    PLoS One; 2013; 8(8):e70791. PubMed ID: 23951010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New views on synapse-glia interactions.
    Pfrieger FW; Barres BA
    Curr Opin Neurobiol; 1996 Oct; 6(5):615-21. PubMed ID: 8937825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study.
    Kruk PJ; Korn H; Faber DS
    Biophys J; 1997 Dec; 73(6):2874-90. PubMed ID: 9414202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of neuron-glia interactions in developmental synapse elimination.
    Terni B; López-Murcia FJ; Llobet A
    Brain Res Bull; 2017 Mar; 129():74-81. PubMed ID: 27601093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse.
    Wahl LM; Pouzat C; Stratford KJ
    J Neurophysiol; 1996 Feb; 75(2):597-608. PubMed ID: 8714637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic models for the in silico simulation of synaptic processes.
    Bracciali A; Brunelli M; Cataldo E; Degano P
    BMC Bioinformatics; 2008 Apr; 9 Suppl 4(Suppl 4):S7. PubMed ID: 18460180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.
    Rosenbaum R; Rubin J; Doiron B
    PLoS Comput Biol; 2012; 8(6):e1002557. PubMed ID: 22737062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and regulation of proteins at synapses.
    Kim JH; Huganir RL
    Curr Opin Cell Biol; 1999 Apr; 11(2):248-54. PubMed ID: 10209161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse.
    Kochubey O; Lou X; Schneggenburger R
    Trends Neurosci; 2011 May; 34(5):237-46. PubMed ID: 21439657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotransmitter transporters expressed in glial cells as regulators of synapse function.
    Eulenburg V; Gomeza J
    Brain Res Rev; 2010 May; 63(1-2):103-12. PubMed ID: 20097227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction.
    Robitaille R
    Neuron; 1998 Oct; 21(4):847-55. PubMed ID: 9808470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model synapse that incorporates the properties of short- and long-term synaptic plasticity.
    Sargsyan AR; Melkonyan AA; Papatheodoropoulos C; Mkrtchian HH; Kostopoulos GK
    Neural Netw; 2003 Oct; 16(8):1161-77. PubMed ID: 13678620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic model of central synapses: slow diffusion of transmitter interacting with spatially distributed receptors and transporters.
    Trommershäuser J; Marienhagen J; Zippelius A
    J Theor Biol; 1999 May; 198(1):101-20. PubMed ID: 10329118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission.
    Murphy-Royal C; Dupuis J; Groc L; Oliet SHR
    J Neurosci Res; 2017 Nov; 95(11):2140-2151. PubMed ID: 28150867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purinergic modulation of synaptic signalling at the neuromuscular junction.
    Todd KJ; Robitaille R
    Pflugers Arch; 2006 Aug; 452(5):608-14. PubMed ID: 16604367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of neurotransmission by reciprocal synapse-glial interactions at the neuromuscular junction.
    Auld DS; Colomar A; Bélair EL; Castonguay A; Pinard A; Rousse I; Thomas S; Robitaille R
    J Neurocytol; 2003; 32(5-8):1003-15. PubMed ID: 15034282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The brain's extracellular matrix and its role in synaptic plasticity.
    Frischknecht R; Gundelfinger ED
    Adv Exp Med Biol; 2012; 970():153-71. PubMed ID: 22351055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.