These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22460582)

  • 1. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells.
    Le Chalony C; Hoffschir F; Gauthier LR; Gross J; Biard DS; Boussin FD; Pennaneach V
    Cell Mol Life Sci; 2012 Sep; 69(17):2933-49. PubMed ID: 22460582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells.
    Arakawa H; Bednar T; Wang M; Paul K; Mladenov E; Bencsik-Theilen AA; Iliakis G
    Nucleic Acids Res; 2012 Mar; 40(6):2599-610. PubMed ID: 22127868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.
    Simsek D; Furda A; Gao Y; Artus J; Brunet E; Hadjantonakis AK; Van Houten B; Shuman S; McKinnon PJ; Jasin M
    Nature; 2011 Mar; 471(7337):245-8. PubMed ID: 21390132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
    Leppard JB; Dong Z; Mackey ZB; Tomkinson AE
    Mol Cell Biol; 2003 Aug; 23(16):5919-27. PubMed ID: 12897160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase.
    Liddiard K; Ruis B; Kan Y; Cleal K; Ashelford KE; Hendrickson EA; Baird DM
    Nucleic Acids Res; 2019 Mar; 47(5):2402-2424. PubMed ID: 30590694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early embryonic lethality due to targeted inactivation of DNA ligase III.
    Puebla-Osorio N; Lacey DB; Alt FW; Zhu C
    Mol Cell Biol; 2006 May; 26(10):3935-41. PubMed ID: 16648486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III.
    Caldecott KW; McKeown CK; Tucker JD; Ljungquist S; Thompson LH
    Mol Cell Biol; 1994 Jan; 14(1):68-76. PubMed ID: 8264637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair.
    Taylor RM; Moore DJ; Whitehouse J; Johnson P; Caldecott KW
    Mol Cell Biol; 2000 Jan; 20(2):735-40. PubMed ID: 10611252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unchanged PCNA and DNMT1 dynamics during replication in DNA ligase I-deficient cells but abnormal chromatin levels of non-replicative histone H1.
    Bhandari SK; Wiest N; Sallmyr A; Du R; Ferry L; Defossez PA; Tomkinson AE
    Sci Rep; 2023 Mar; 13(1):4363. PubMed ID: 36928068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication.
    Barrows LR; Holden JA; Anderson M; D'Arpa P
    Mutat Res; 1998 Aug; 408(2):103-10. PubMed ID: 9739812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-damage response and repair activities at uncapped telomeres depend on RNF8.
    Peuscher MH; Jacobs JJ
    Nat Cell Biol; 2011 Aug; 13(9):1139-45. PubMed ID: 21857671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair.
    Gao Y; Katyal S; Lee Y; Zhao J; Rehg JE; Russell HR; McKinnon PJ
    Nature; 2011 Mar; 471(7337):240-4. PubMed ID: 21390131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair.
    Parsons JL; Dianova II; Finch D; Tait PS; Ström CE; Helleday T; Dianov GL
    DNA Repair (Amst); 2010 Jul; 9(7):835-41. PubMed ID: 20471329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation.
    Tebbs RS; Thompson LH; Cleaver JE
    DNA Repair (Amst); 2003 Dec; 2(12):1405-17. PubMed ID: 14642568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage.
    Masson M; Niedergang C; Schreiber V; Muller S; Menissier-de Murcia J; de Murcia G
    Mol Cell Biol; 1998 Jun; 18(6):3563-71. PubMed ID: 9584196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered DNA ligase III activity in the CHO EM9 mutant.
    Ljungquist S; Kenne K; Olsson L; Sandström M
    Mutat Res; 1994 Mar; 314(2):177-86. PubMed ID: 7510367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.
    Audebert M; Salles B; Calsou P
    J Biol Chem; 2004 Dec; 279(53):55117-26. PubMed ID: 15498778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completion of base excision repair by mammalian DNA ligases.
    Tomkinson AE; Chen L; Dong Z; Leppard JB; Levin DS; Mackey ZB; Motycka TA
    Prog Nucleic Acid Res Mol Biol; 2001; 68():151-64. PubMed ID: 11554294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial DNA ligase III function is independent of Xrcc1.
    Lakshmipathy U; Campbell C
    Nucleic Acids Res; 2000 Oct; 28(20):3880-6. PubMed ID: 11024166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination.
    Celli GB; Denchi EL; de Lange T
    Nat Cell Biol; 2006 Aug; 8(8):885-90. PubMed ID: 16845382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.