These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 22460605)

  • 1. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization.
    Chanmanee W; Watcharenwong A; Chenthamarakshan CR; Kajitvichyanukul P; de Tacconi NR; Rajeshwar K
    J Am Chem Soc; 2008 Jan; 130(3):965-74. PubMed ID: 18163623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.
    Yuan X; Zheng M; Ma L; Shen W
    Nanotechnology; 2010 Oct; 21(40):405302. PubMed ID: 20829566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization.
    Yin H; Liu H; Shen WZ
    Nanotechnology; 2010 Jan; 21(3):035601. PubMed ID: 19966387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties.
    Wender H; Feil AF; Diaz LB; Ribeiro CS; Machado GJ; Migowski P; Weibel DE; Dupont J; Teixeira SR
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1359-65. PubMed ID: 21443251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet.
    Wang L; Zhao TT; Zhang Z; Li G
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the growth mechanism of large-diameter double-wall TiO
    Ke C; Ma J; Ni J; Peng Z
    Ann Transl Med; 2023 Jan; 11(1):18. PubMed ID: 36760252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening.
    Yoriya S; Grimes CA
    Langmuir; 2010 Jan; 26(1):417-20. PubMed ID: 20038179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering bamboo-type TiO2 nanotube arrays to enhance their photocatalytic property.
    Guan D; Hymel PJ; Zhou C; Wang Y
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4541-50. PubMed ID: 24738426
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Lee WH; Lai CW; Hamid SBA
    Materials (Basel); 2015 Aug; 8(9):5702-5714. PubMed ID: 28793530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.
    Cui CX; Gao X; Qi YM; Liu SJ; Sun JB
    J Mech Behav Biomed Mater; 2012 Apr; 8():178-83. PubMed ID: 22402164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization.
    Ni J; Noh K; Frandsen CJ; Kong SD; He G; Tang T; Jin S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):259-64. PubMed ID: 25428070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient inverted solar cells using TiO(2) nanotube arrays.
    Yu BY; Tsai A; Tsai SP; Wong KT; Yang Y; Chu CW; Shyue JJ
    Nanotechnology; 2008 Jun; 19(25):255202. PubMed ID: 21828647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically branched titania nanotubes with tailored diameters and branch numbers.
    Chen B; Lu K
    Langmuir; 2012 Feb; 28(5):2937-43. PubMed ID: 22188171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.