BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22460611)

  • 1. Spinal cord injury: one-year evolution of motor-evoked potentials and recovery of leg motor function in 255 patients.
    Petersen JA; Spiess M; Curt A; Dietz V; Schubert M;
    Neurorehabil Neural Repair; 2012 Oct; 26(8):939-48. PubMed ID: 22460611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional implications of corticospinal tract impairment on gait after spinal cord injury.
    Barthélemy D; Knudsen H; Willerslev-Olsen M; Lundell H; Nielsen JB; Biering-Sørensen F
    Spinal Cord; 2013 Nov; 51(11):852-6. PubMed ID: 23939192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper Limb Recovery in Spinal Cord Injury: Involvement of Central and Peripheral Motor Pathways.
    Petersen JA; Spiess M; Curt A; Weidner N; Rupp R; Abel R; ; Schubert M
    Neurorehabil Neural Repair; 2017 May; 31(5):432-441. PubMed ID: 28132610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials.
    Spiess M; Schubert M; Kliesch U; ; Halder P
    Clin Neurophysiol; 2008 May; 119(5):1051-61. PubMed ID: 18343719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task.
    van Hedel HJ; Murer C; Dietz V; Curt A
    J Neurol; 2007 Aug; 254(8):1089-98. PubMed ID: 17431701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes of somatosensory and transcranial magnetic stimulation motor evoked potentials in experimental spinal cord injury].
    Hou Y; Nie L; Liu LH; Shao J; Yuan YJ
    Zhonghua Yi Xue Za Zhi; 2008 Mar; 88(11):773-7. PubMed ID: 18683688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury.
    Diehl P; Kliesch U; Dietz V; Curt A
    J Neurol; 2006 Jan; 253(1):51-7. PubMed ID: 16044213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slowed down: response time deficits in well-recovered subjects with incomplete spinal cord injury.
    Labruyère R; Zimmerli M; van Hedel HJ
    Arch Phys Med Rehabil; 2013 Oct; 94(10):2020-6. PubMed ID: 23602883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials.
    Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD
    Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB
    Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effects of graded spinal cord injuries on transcranial electric stimulation motor evoked potentials in the rat].
    Yu K; Li J; Jia L; Bao J; Yuan W; Ye T; Cui Y
    Zhonghua Wai Ke Za Zhi; 1998 Jul; 36(7):417-20. PubMed ID: 11825429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal estimation of intramuscular Tibialis Anterior coherence during subacute spinal cord injury: relationship with neurophysiological, functional and clinical outcome measures.
    Bravo-Esteban E; Taylor J; Aleixandre M; Simón-Martínez C; Torricelli D; Pons JL; Avila-Martín G; Galán-Arriero I; Gómez-Soriano J
    J Neuroeng Rehabil; 2017 Jun; 14(1):58. PubMed ID: 28619087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level.
    Skinner SA; Transfeldt EE; Mehbod AA; Mullan JC; Perra JH
    Clin Neurophysiol; 2009 Apr; 120(4):754-64. PubMed ID: 19278900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimate of motor conduction in human spinal cord: slowed conduction in spinal cord injury.
    Chang CW; Lien IN
    Muscle Nerve; 1991 Oct; 14(10):990-6. PubMed ID: 1944412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.