These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 22460646)

  • 1. Molecular mechanisms of cryptococcal meningitis.
    Liu TB; Perlin DS; Xue C
    Virulence; 2012; 3(2):173-81. PubMed ID: 22460646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD4
    Neal LM; Xing E; Xu J; Kolbe JL; Osterholzer JJ; Segal BM; Williamson PR; Olszewski MA
    mBio; 2017 Nov; 8(6):. PubMed ID: 29162707
    [No Abstract]   [Full Text] [Related]  

  • 3. Central nervous system involvement in cryptococcal infection in individuals after solid organ transplantation or with AIDS.
    Davis JA; Horn DL; Marr KA; Fishman JA
    Transpl Infect Dis; 2009 Oct; 11(5):432-7. PubMed ID: 19638005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landmark clinical observations and immunopathogenesis pathways linked to HIV and Cryptococcus fatal central nervous system co-infection.
    Okurut S; Boulware DR; Olobo J; Meya DB
    Mycoses; 2020 Aug; 63(8):840-853. PubMed ID: 32472727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Antivirulence Approach for Preventing Cryptococcus neoformans from Crossing the Blood-Brain Barrier via Novel Natural Product Inhibitors of a Fungal Metalloprotease.
    Aaron PA; Vu K; Gelli A
    mBio; 2020 Jul; 11(4):. PubMed ID: 32694141
    [No Abstract]   [Full Text] [Related]  

  • 6. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia.
    Chrétien F; Lortholary O; Kansau I; Neuville S; Gray F; Dromer F
    J Infect Dis; 2002 Aug; 186(4):522-30. PubMed ID: 12195380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans.
    Sabiiti W; May RC
    Future Microbiol; 2012 Nov; 7(11):1297-313. PubMed ID: 23075448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of host response to Cryptococcus neoformans through quantitative proteomic analysis of cryptococcal meningitis co-infected with HIV.
    Selvan LD; Sreenivasamurthy SK; Kumar S; Yelamanchi SD; Madugundu AK; Anil AK; Renuse S; Nair BG; Gowda H; Mathur PP; Satishchandra P; Shankar SK; Mahadevan A; Keshava Prasad TS
    Mol Biosyst; 2015 Sep; 11(9):2529-40. PubMed ID: 26181685
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Woo YH; Martinez LR
    Crit Rev Microbiol; 2021 Mar; 47(2):206-223. PubMed ID: 33476528
    [No Abstract]   [Full Text] [Related]  

  • 10. A prospective descriptive study of cryptococcal meningitis in HIV uninfected patients in Vietnam - high prevalence of Cryptococcus neoformans var grubii in the absence of underlying disease.
    Chau TT; Mai NH; Phu NH; Nghia HD; Chuong LV; Sinh DX; Duong VA; Diep PT; Campbell JI; Baker S; Hien TT; Lalloo DG; Farrar JJ; Day JN
    BMC Infect Dis; 2010 Jul; 10():199. PubMed ID: 20618932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal CNS Infections in Africa: The Neuroimmunology of Cryptococcal Meningitis.
    Mohamed SH; Nyazika TK; Ssebambulidde K; Lionakis MS; Meya DB; Drummond RA
    Front Immunol; 2022; 13():804674. PubMed ID: 35432326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk Factors for Cryptococcal Meningitis: A Single United States Center Experience.
    Henao-Martínez AF; Gross L; Mcnair B; McCollister B; DeSanto K; Montoya JG; Shapiro L; Beckham JD
    Mycopathologia; 2016 Dec; 181(11-12):807-814. PubMed ID: 27502502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemiology and management of cryptococcal meningitis: developments and challenges.
    Pukkila-Worley R; Mylonakis E
    Expert Opin Pharmacother; 2008 Mar; 9(4):551-60. PubMed ID: 18312157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier.
    Liu TB; Kim JC; Wang Y; Toffaletti DL; Eugenin E; Perfect JR; Kim KJ; Xue C
    PLoS Pathog; 2013; 9(4):e1003247. PubMed ID: 23592982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The F-Box Protein Fbp1 Shapes the Immunogenic Potential of
    Masso-Silva J; Espinosa V; Liu TB; Wang Y; Xue C; Rivera A
    mBio; 2018 Jan; 9(1):. PubMed ID: 29317510
    [No Abstract]   [Full Text] [Related]  

  • 16. Zebrafish Larvae as an Experimental Model of Cryptococcal Meningitis.
    Chalakova ZP; Johnston SA
    Methods Mol Biol; 2023; 2667():47-69. PubMed ID: 37145275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease.
    Shourian M; Qureshi ST
    Front Immunol; 2019; 10():66. PubMed ID: 30761136
    [No Abstract]   [Full Text] [Related]  

  • 18. A Zebrafish Model of Cryptococcal Infection Reveals Roles for Macrophages, Endothelial Cells, and Neutrophils in the Establishment and Control of Sustained Fungemia.
    Davis JM; Huang M; Botts MR; Hull CM; Huttenlocher A
    Infect Immun; 2016 Oct; 84(10):3047-62. PubMed ID: 27481252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
    Santiago-Tirado FH; Onken MD; Cooper JA; Klein RS; Doering TL
    mBio; 2017 Jan; 8(1):. PubMed ID: 28143979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Rabbit Model of Cryptococcal Meningitis.
    Giamberardino C; Perfect JR
    Methods Mol Biol; 2024; 2775():13-27. PubMed ID: 38758308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.