These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22460746)

  • 1. Two-phase stratified sampling designs for regional sequencing.
    Chen Z; Craiu RV; Bull SB
    Genet Epidemiol; 2012 May; 36(4):320-32. PubMed ID: 22460746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-phase designs to follow-up genome-wide association signals with DNA resequencing studies.
    Schaid DJ; Jenkins GD; Ingle JN; Weinshilboum RM
    Genet Epidemiol; 2013 Apr; 37(3):229-38. PubMed ID: 23348637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A note on the efficiencies of sampling strategies in two-stage Bayesian regional fine mapping of a quantitative trait.
    Chen Z; Craiu RV; Bull SB
    Genet Epidemiol; 2014 Nov; 38(7):599-609. PubMed ID: 25132153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enriching targeted sequencing experiments for rare disease alleles.
    Edwards TL; Song Z; Li C
    Bioinformatics; 2011 Aug; 27(15):2112-8. PubMed ID: 21700677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-phase designs for joint quantitative-trait-dependent and genotype-dependent sampling in post-GWAS regional sequencing.
    Espin-Garcia O; Craiu RV; Bull SB
    Genet Epidemiol; 2018 Feb; 42(1):104-116. PubMed ID: 29239496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide selection of tag SNPs using multiple-marker correlation.
    Hao K
    Bioinformatics; 2007 Dec; 23(23):3178-84. PubMed ID: 18006555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome.
    Azam S; Thakur V; Ruperao P; Shah T; Balaji J; Amindala B; Farmer AD; Studholme DJ; May GD; Edwards D; Jones JD; Varshney RK
    Am J Bot; 2012 Feb; 99(2):186-92. PubMed ID: 22301893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of association studies with pooled or un-pooled next-generation sequencing data.
    Kim SY; Li Y; Guo Y; Li R; Holmkvist J; Hansen T; Pedersen O; Wang J; Nielsen R
    Genet Epidemiol; 2010 Jul; 34(5):479-91. PubMed ID: 20552648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-phase sample selection strategies for design and analysis in post-genome-wide association fine-mapping studies.
    Espin-Garcia O; Craiu RV; Bull SB
    Stat Med; 2021 Dec; 40(30):6792-6817. PubMed ID: 34596256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective algorithms for tag SNP selection.
    Liu TF; Sung WK; Li Y; Liu JJ; Mittal A; Mao PL
    J Bioinform Comput Biol; 2005 Oct; 3(5):1089-106. PubMed ID: 16278949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct inference of SNP heterozygosity rates and resolution of LOH detection.
    Li X; Self SG; Galipeau PC; Paulson TG; Reid BJ
    PLoS Comput Biol; 2007 Nov; 3(11):e244. PubMed ID: 18052545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MLR-tagging: informative SNP selection for unphased genotypes based on multiple linear regression.
    He J; Zelikovsky A
    Bioinformatics; 2006 Oct; 22(20):2558-61. PubMed ID: 16895924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tag SNP selection for association studies.
    Stram DO
    Genet Epidemiol; 2004 Dec; 27(4):365-74. PubMed ID: 15372618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implication of next-generation sequencing on association studies.
    Siu H; Zhu Y; Jin L; Xiong M
    BMC Genomics; 2011 Jun; 12():322. PubMed ID: 21682891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses.
    Liu A; Lund MS; Boichard D; Karaman E; Guldbrandtsen B; Fritz S; Aamand GP; Nielsen US; Sahana G; Wang Y; Su G
    Genet Sel Evol; 2020 Aug; 52(1):48. PubMed ID: 32799816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tag SNP selection in genotype data for maximizing SNP prediction accuracy.
    Halperin E; Kimmel G; Shamir R
    Bioinformatics; 2005 Jun; 21 Suppl 1():i195-203. PubMed ID: 15961458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure.
    Cuesta-Marcos A; Szucs P; Close TJ; Filichkin T; Muehlbauer GJ; Smith KP; Hayes PM
    BMC Genomics; 2010 Dec; 11():707. PubMed ID: 21159198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haplotype block structure and its applications to association studies: power and study designs.
    Zhang K; Calabrese P; Nordborg M; Sun F
    Am J Hum Genet; 2002 Dec; 71(6):1386-94. PubMed ID: 12439824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate detection and genotyping of SNPs utilizing population sequencing data.
    Bansal V; Harismendy O; Tewhey R; Murray SS; Schork NJ; Topol EJ; Frazer KA
    Genome Res; 2010 Apr; 20(4):537-45. PubMed ID: 20150320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.