These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22460797)

  • 41. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.
    Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC
    Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mimicking nitrogenase.
    Dance I
    Dalton Trans; 2010 Mar; 39(12):2972-83. PubMed ID: 20221528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.
    Dance I
    Dalton Trans; 2011 Jun; 40(24):6480-9. PubMed ID: 21584340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The chemical mechanism of nitrogenase: hydrogen tunneling and further aspects of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3).
    Dance I
    Dalton Trans; 2008 Nov; (43):5992-8. PubMed ID: 19082055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 14N electron spin-echo envelope modulation of the S = 3/2 spin system of the Azotobacter vinelandii nitrogenase iron-molybdenum cofactor.
    Lee HI; Thrasher KS; Dean DR; Newton WE; Hoffman BM
    Biochemistry; 1998 Sep; 37(38):13370-8. PubMed ID: 9748344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ENDOR characterization of a synthetic diiron hydrazido complex as a model for nitrogenase intermediates.
    Lees NS; McNaughton RL; Gregory WV; Holland PL; Hoffman BM
    J Am Chem Soc; 2008 Jan; 130(2):546-55. PubMed ID: 18092774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of N
    Harris DF; Lukoyanov DA; Shaw S; Compton P; Tokmina-Lukaszewska M; Bothner B; Kelleher N; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2018 Feb; 57(5):701-710. PubMed ID: 29283553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis.
    Rasche ME; Seefeldt LC
    Biochemistry; 1997 Jul; 36(28):8574-85. PubMed ID: 9214303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-Resolved EPR Study of H
    Lukoyanov DA; Krzyaniak MD; Dean DR; Wasielewski MR; Seefeldt LC; Hoffman BM
    J Phys Chem B; 2019 Oct; 123(41):8823-8828. PubMed ID: 31549504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitrogenase Bioelectrochemistry for Synthesis Applications.
    Milton RD; Minteer SD
    Acc Chem Res; 2019 Dec; 52(12):3351-3360. PubMed ID: 31800207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanistic Insights into Nitrogenase FeMo-Cofactor Catalysis through a Steady-State Kinetic Model.
    Harris DF; Badalyan A; Seefeldt LC
    Biochemistry; 2022 Oct; 61(19):2131-2137. PubMed ID: 36103672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen binding to the FeMo-cofactor of nitrogenase.
    Schimpl J; Petrilli HM; Blöchl PE
    J Am Chem Soc; 2003 Dec; 125(51):15772-8. PubMed ID: 14677967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters.
    Jimenez-Vicente E; Yang ZY; Martin Del Campo JS; Cash VL; Seefeldt LC; Dean DR
    J Biol Chem; 2019 Apr; 294(16):6204-6213. PubMed ID: 30846561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The stereochemistry and dynamics of the introduction of hydrogen atoms onto FeMo-co, the active site of nitrogenase.
    Dance I
    Inorg Chem; 2013 Nov; 52(22):13068-77. PubMed ID: 24168620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein.
    Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein.
    Shen J; Dean DR; Newton WE
    Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrazine is a product of dinitrogen reduction by the vanadium-nitrogenase from Azotobacter chroococcum.
    Dilworth MJ; Eady RR
    Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):465-8. PubMed ID: 1859374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The One-Electron Reduced Active-Site FeFe-Cofactor of Fe-Nitrogenase Contains a Hydride Bound to a Formally Oxidized Metal-Ion Core.
    Lukoyanov DA; Harris DF; Yang ZY; Pérez-González A; Dean DR; Seefeldt LC; Hoffman BM
    Inorg Chem; 2022 Apr; 61(14):5459-5464. PubMed ID: 35357830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen.
    Lee HI; Benton PM; Laryukhin M; Igarashi RY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2003 May; 125(19):5604-5. PubMed ID: 12733878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.