These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 22461319)
1. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds. Ostojic GN; Hersam MC Small; 2012 Jun; 8(12):1840-5. PubMed ID: 22461319 [TBL] [Abstract][Full Text] [Related]
2. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Shastry TA; Seo JW; Lopez JJ; Arnold HN; Kelter JZ; Sangwan VK; Lauhon LJ; Marks TJ; Hersam MC Small; 2013 Jan; 9(1):45-51. PubMed ID: 22987547 [TBL] [Abstract][Full Text] [Related]
3. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization. Zhang S; Lin W; Wong CP; Bucknall DG; Kumar S ACS Appl Mater Interfaces; 2010 Jun; 2(6):1642-7. PubMed ID: 20507070 [TBL] [Abstract][Full Text] [Related]
4. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer. Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337 [TBL] [Abstract][Full Text] [Related]
5. Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces. Kim SN; Slocik JM; Naik RR Small; 2010 Sep; 6(18):1992-5. PubMed ID: 20721951 [No Abstract] [Full Text] [Related]
6. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Xia F; Steiner M; Lin YM; Avouris P Nat Nanotechnol; 2008 Oct; 3(10):609-13. PubMed ID: 18839000 [TBL] [Abstract][Full Text] [Related]
7. Towards chirality-pure carbon nanotubes. Zhang Y; Zheng L Nanoscale; 2010 Oct; 2(10):1919-29. PubMed ID: 20835436 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers. Xiang C; Lu W; Zhu Y; Sun Z; Yan Z; Hwang CC; Tour JM ACS Appl Mater Interfaces; 2012 Jan; 4(1):131-6. PubMed ID: 22117617 [TBL] [Abstract][Full Text] [Related]
9. Facile "scratching" method with common metal objects to generate large-scale catalyst patterns used for growth of single-walled carbon nanotubes. Cao X; Li B; Huang Y; Boey F; Yu T; Shen Z; Zhang H ACS Appl Mater Interfaces; 2009 Sep; 1(9):1873-7. PubMed ID: 20355809 [TBL] [Abstract][Full Text] [Related]
14. Ultrathin carbon nanotube-DNA hybrid membrane formation by simple physical adsorption onto a thin alumina substrate. Guo M; Lv W; Zhang S; Jin FM; Wang Q; Ling GW; Yang QH Nanotechnology; 2010 Jul; 21(28):285601. PubMed ID: 20562483 [TBL] [Abstract][Full Text] [Related]
15. Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Hart AJ; van Laake L; Slocum AH Small; 2007 May; 3(5):772-7. PubMed ID: 17410616 [No Abstract] [Full Text] [Related]
16. Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method. Li Y; Yu T; Pui T; Chen P; Zheng L; Liao K Nanoscale; 2011 Jun; 3(6):2469-71. PubMed ID: 21589986 [TBL] [Abstract][Full Text] [Related]
17. Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates. Xiong X; Chen CL; Ryan P; Busnaina AA; Jung YJ; Dokmeci MR Nanotechnology; 2009 Jul; 20(29):295302. PubMed ID: 19567952 [TBL] [Abstract][Full Text] [Related]
18. Carbon nanotube-DNA nanoarchitectures and electronic functionality. Wang X; Liu F; Andavan GT; Jing X; Singh K; Yazdanpanah VR; Bruque N; Pandey RR; Lake R; Ozkan M; Wang KL; Ozkan CS Small; 2006 Nov; 2(11):1356-65. PubMed ID: 17192987 [TBL] [Abstract][Full Text] [Related]
19. SWCNT networks on nanoporous silica catalyst support: morphological and connectivity control for nanoelectronic, gas-sensing, and biosensing devices. Han ZJ; Mehdipour H; Li X; Shen J; Randeniya L; Yang HY; Ostrikov KK ACS Nano; 2012 Jul; 6(7):5809-19. PubMed ID: 22679913 [TBL] [Abstract][Full Text] [Related]
20. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes. Ambrosi A; Pumera M Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]