These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22461377)
1. Photolytic versus microbial degradation of clomazone in a flooded California rice field soil. Tomco PL; Tjeerdema RS Pest Manag Sci; 2012 Aug; 68(8):1141-7. PubMed ID: 22461377 [TBL] [Abstract][Full Text] [Related]
2. Microbial degradation of clomazone under simulated California rice field conditions. Tomco PL; Holstege DM; Zou W; Tjeerdema RS J Agric Food Chem; 2010 Mar; 58(6):3674-80. PubMed ID: 20178392 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of clomazone in a California rice field soil: carbon allocation and community effects. Tomco PL; Holmes WE; Tjeerdema RS J Agric Food Chem; 2013 Mar; 61(11):2618-24. PubMed ID: 23432155 [TBL] [Abstract][Full Text] [Related]
4. Soil and glass surface photodegradation of etofenprox under simulated california rice growing conditions. Vasquez M; Cahill T; Tjeerdema R J Agric Food Chem; 2011 Jul; 59(14):7874-81. PubMed ID: 21675771 [TBL] [Abstract][Full Text] [Related]
5. Environmental fate and toxicology of clomazone. Van Scoy AR; Tjeerdema RS Rev Environ Contam Toxicol; 2014; 229():35-49. PubMed ID: 24515809 [TBL] [Abstract][Full Text] [Related]
6. The behavior of clomazone in the soil environment. Gunasekara AS; dela Cruz ID; Curtis MJ; Claassen VP; Tjeerdema RS Pest Manag Sci; 2009 Jun; 65(6):711-6. PubMed ID: 19319928 [TBL] [Abstract][Full Text] [Related]
7. Photoinduced degradation of the herbicide clomazone model reactions for natural and technical systems. David Gara PM; Bosio GN; Arce VB; Poulsen L; Ogilby PR; Giudici R; Gonzalez MC; Mártire DO Photochem Photobiol; 2009; 85(3):686-92. PubMed ID: 19067950 [TBL] [Abstract][Full Text] [Related]
8. Field dissipation and environmental hazard assessment of clomazone, molinate, and thiobencarb in Australian rice culture. Quayle WC; Oliver DP; Zrna S J Agric Food Chem; 2006 Sep; 54(19):7213-20. PubMed ID: 16968085 [TBL] [Abstract][Full Text] [Related]
9. Burned rice straw reduces the availability of clomazone to barnyardgrass. Xu C; Liu W; Sheng GD Sci Total Environ; 2008 Mar; 392(2-3):284-9. PubMed ID: 18178240 [TBL] [Abstract][Full Text] [Related]
10. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products. Abramović BF; Despotović VN; Šojić DV; Orčić DZ; Csanádi JJ; Četojević-Simin DD Chemosphere; 2013 Sep; 93(1):166-71. PubMed ID: 23773444 [TBL] [Abstract][Full Text] [Related]
11. Aerobic versus Anaerobic Microbial Degradation of Etofenprox in a California rice field soil. Vasquez ME; Holstege DM; Tjeerdema RS J Agric Food Chem; 2011 Mar; 59(6):2486-92. PubMed ID: 21351774 [TBL] [Abstract][Full Text] [Related]
12. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils. Gunasekara AS; Tenbrook PL; Palumbo AJ; Johnson CS; Tjeerdema RS J Agric Food Chem; 2005 Dec; 53(26):10113-9. PubMed ID: 16366703 [TBL] [Abstract][Full Text] [Related]
13. Differential oxidative metabolism and 5-ketoclomazone accumulation are involved in Echinochloa phyllopogon resistance to clomazone. Yasuor H; Zou W; Tolstikov VV; Tjeerdema RS; Fischer AJ Plant Physiol; 2010 May; 153(1):319-26. PubMed ID: 20207709 [TBL] [Abstract][Full Text] [Related]
14. Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation. Feng Y; Liu J; Zhu L; Wei J Water Sci Technol; 2013; 68(1):257-60. PubMed ID: 23823563 [TBL] [Abstract][Full Text] [Related]
15. Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate. Diaz Kirmser EM; Mártire DO; Gonzalez MC; Rosso JA J Agric Food Chem; 2010 Dec; 58(24):12858-62. PubMed ID: 21105654 [TBL] [Abstract][Full Text] [Related]
16. Impact of percentage and particle size of sugarcane biochar on the sorption behavior of clomazone in Red Latosol. Silva MRFD; Queiroz MELR; Neves AA; Silva AAD; Oliveira AF; Oliveira RL; Azevedo MM An Acad Bras Cienc; 2018; 90(4):3745-3759. PubMed ID: 30517221 [TBL] [Abstract][Full Text] [Related]
17. Responses to clomazone and 5-ketoclomazone by Echinochloa phyllopogon resistant to multiple herbicides in Californian rice fields. Yasuor H; TenBrook PL; Tjeerdema RS; Fischer AJ Pest Manag Sci; 2008 Oct; 64(10):1031-9. PubMed ID: 18493924 [TBL] [Abstract][Full Text] [Related]
18. Clomazone dissipation, adsorption and translocation in four paddy topsoils. Li LF; Li GX; Yang RB; Guo ZY; Liao XY J Environ Sci (China); 2004; 16(4):678-82. PubMed ID: 15495980 [TBL] [Abstract][Full Text] [Related]
19. Comparative actions of clomazone on beta-carotene levels and growth in rice (Oryza sativa) and watergrasses (Echinochloa spp). TenBrook PL; Tjeerdema RS Pest Manag Sci; 2005 Jun; 61(6):567-71. PubMed ID: 15662718 [TBL] [Abstract][Full Text] [Related]
20. Influence of Formulation on Mobility of Clomazone in Soil. Włodarczyk M; Siwek H Bull Environ Contam Toxicol; 2016 Oct; 97(4):582-7. PubMed ID: 27557602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]