These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22461410)

  • 21. Release of bioactive volatiles from supramolecular hydrogels: influence of reversible acylhydrazone formation on gel stability and volatile compound evaporation.
    Buchs B; Fieber W; Vigouroux-Elie F; Sreenivasachary N; Lehn JM; Herrmann A
    Org Biomol Chem; 2011 Apr; 9(8):2906-19. PubMed ID: 21380478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.
    Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE
    Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization.
    Nebot VJ; Armengol J; Smets J; Prieto SF; Escuder B; Miravet JF
    Chemistry; 2012 Mar; 18(13):4063-72. PubMed ID: 22354848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water dynamics in bolaamphiphile hydrogels investigated by 1H NMR relaxometry and diffusometry.
    Bastrop M; Meister A; Metz H; Drescher S; Dobner B; Mäder K; Blume A
    J Phys Chem B; 2011 Jan; 115(1):14-22. PubMed ID: 21142164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of N2-modified guanosine derivatives: formation of discrete G-octamers.
    Martić S; Liu X; Wang S; Wu G
    Chemistry; 2008; 14(4):1196-204. PubMed ID: 18041014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel porphyrin-incorporated hydrogels for photoactive intraocular lens biomaterials.
    Brady C; Bell SE; Parsons C; Gorman SP; Jones DS; McCoy CP
    J Phys Chem B; 2007 Jan; 111(3):527-34. PubMed ID: 17228910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A thixotropic supramolecular hydrogel of adenine and riboflavin-5'-phosphate sodium salt showing enhanced fluorescence properties.
    Bairi P; Chakraborty P; Mondal S; Roy B; Nandi AK
    Soft Matter; 2014 Jul; 10(28):5114-20. PubMed ID: 24910287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic deactivation of guanosine in extended hydrogen-bonded self-assemblies.
    Röttger K; Schwalb NK; Temps F
    J Phys Chem A; 2013 Mar; 117(12):2469-78. PubMed ID: 23510055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Converting drugs into gelators: supramolecular hydrogels from N-acetyl-L-cysteine and coinage-metal salts.
    Casuso P; Carrasco P; Loinaz I; Grande HJ; Odriozola I
    Org Biomol Chem; 2010 Dec; 8(23):5455-8. PubMed ID: 20882249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of tunable external stimuli on the self-assembly of guanosine supramolecular nanostructures studied by atomic force microscope.
    Li Y; Dong M; Otzen DE; Yao Y; Liu B; Besenbacher F; Mamdouh W
    Langmuir; 2009 Dec; 25(23):13432-7. PubMed ID: 19499943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet.
    Kwan IC; Mo X; Wu G
    J Am Chem Soc; 2007 Feb; 129(8):2398-407. PubMed ID: 17269776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation.
    Yao S; Beginn U; Gress T; Lysetska M; Würthner F
    J Am Chem Soc; 2004 Jul; 126(26):8336-48. PubMed ID: 15225077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip.
    Yoshimura I; Miyahara Y; Kasagi N; Yamane H; Ojida A; Hamachi I
    J Am Chem Soc; 2004 Oct; 126(39):12204-5. PubMed ID: 15453719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials.
    Matsumoto S; Yamaguchi S; Ueno S; Komatsu H; Ikeda M; Ishizuka K; Iko Y; Tabata KV; Aoki H; Ito S; Noji H; Hamachi I
    Chemistry; 2008; 14(13):3977-86. PubMed ID: 18335444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A temperature-responsive supramolecular hydrogel: preparation, gel-gel transition and molecular aggregation.
    Wang L; Shi X; Wang J
    Soft Matter; 2018 Apr; 14(16):3090-3095. PubMed ID: 29611598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G-quartet formation from an N2-modified guanosine derivative.
    Liu X; Kwan IC; Wang S; Wu G
    Org Lett; 2006 Aug; 8(17):3685-8. PubMed ID: 16898792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional encapsulation of live cells by using a hybrid matrix of nanoparticles in a supramolecular hydrogel.
    Ikeda M; Ueno S; Matsumoto S; Shimizu Y; Komatsu H; Kusumoto K; Hamachi I
    Chemistry; 2008; 14(34):10808-15. PubMed ID: 18942699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stepwise supramolecular organisation of guanosine derivatives.
    Gottarelli G; Spada GP
    Chem Rec; 2004; 4(1):39-49. PubMed ID: 15057867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.