These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22461605)

  • 1. Emerging chirality in artificial spin ice.
    Branford WR; Ladak S; Read DE; Zeissler K; Cohen LF
    Science; 2012 Mar; 335(6076):1597-600. PubMed ID: 22461605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial 'spin ice' in a geometrically frustrated lattice of nanoscale ferromagnetic islands.
    Wang RF; Nisoli C; Freitas RS; Li J; McConville W; Cooley BJ; Lund MS; Samarth N; Leighton C; Crespi VH; Schiffer P
    Nature; 2006 Jan; 439(7074):303-6. PubMed ID: 16421565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order.
    Machida Y; Nakatsuji S; Onoda S; Tayama T; Sakakibara T
    Nature; 2010 Jan; 463(7278):210-3. PubMed ID: 20010605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals.
    Yang Q; Xiao J; Robredo I; Vergniory MG; Yan B; Felser C
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2305541120. PubMed ID: 37983495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices.
    Ortiz-Ambriz A; Tierno P
    Nat Commun; 2016 Feb; 7():10575. PubMed ID: 26830629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of unconventional quantum spin textures in topological insulators.
    Hsieh D; Xia Y; Wray L; Qian D; Pal A; Dil JH; Osterwalder J; Meier F; Bihlmayer G; Kane CL; Hor YS; Cava RJ; Hasan MZ
    Science; 2009 Feb; 323(5916):919-22. PubMed ID: 19213915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frustrated magnetism. Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet.
    Hirschberger M; Krizan JW; Cava RJ; Ong NP
    Science; 2015 Apr; 348(6230):106-9. PubMed ID: 25838381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.
    Zeissler K; Chadha M; Lovell E; Cohen LF; Branford WR
    Sci Rep; 2016 Jul; 6():30218. PubMed ID: 27443523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-charge ordering and phase transitions in monopole-conserved square spin ice.
    Xie YL; Du ZZ; Yan ZB; Liu JM
    Sci Rep; 2015 Oct; 5():15875. PubMed ID: 26511870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of topological spin defects in magnetotransport of CrO(2).
    Yanagihara H; Salamon MB
    J Phys Condens Matter; 2007 Aug; 19(31):315206. PubMed ID: 21694107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets.
    Ishizuka H; Nagaosa N
    Sci Adv; 2018 Feb; 4(2):eaap9962. PubMed ID: 29487909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.
    Perrin Y; Canals B; Rougemaille N
    Nature; 2016 Dec; 540(7633):410-413. PubMed ID: 27894124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallites of magnetic charges in artificial spin ice.
    Zhang S; Gilbert I; Nisoli C; Chern GW; Erickson MJ; O'Brien L; Leighton C; Lammert PE; Crespi VH; Schiffer P
    Nature; 2013 Aug; 500(7464):553-7. PubMed ID: 23985872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic magnetic frustration.
    Mellado P; Concha A; Mahadevan L
    Phys Rev Lett; 2012 Dec; 109(25):257203. PubMed ID: 23368492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.
    Owerre SA
    J Phys Condens Matter; 2017 Jan; 29(3):03LT01. PubMed ID: 27845921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How 'spin ice' freezes.
    Snyder J; Slusky JS; Cava RJ; Schiffer P
    Nature; 2001 Sep; 413(6851):48-51. PubMed ID: 11544520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice.
    Rougemaille N; Montaigne F; Canals B; Duluard A; Lacour D; Hehn M; Belkhou R; Fruchart O; El Moussaoui S; Bendounan A; Maccherozzi F
    Phys Rev Lett; 2011 Feb; 106(5):057209. PubMed ID: 21405433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic monopoles in spin ice.
    Castelnovo C; Moessner R; Sondhi SL
    Nature; 2008 Jan; 451(7174):42-5. PubMed ID: 18172493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Coulomb phase in the spin ice Ho2Ti2O7.
    Fennell T; Deen PP; Wildes AR; Schmalzl K; Prabhakaran D; Boothroyd AT; Aldus RJ; McMorrow DF; Bramwell ST
    Science; 2009 Oct; 326(5951):415-7. PubMed ID: 19729619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.