BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22461767)

  • 1. Trans-acting factors governing acetylcholinesterase mRNA metabolism in neurons.
    Bronicki LM; Jasmin BJ
    Front Mol Neurosci; 2012; 5():36. PubMed ID: 22461767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ELAV-like RNA-binding proteins HuD and HuR in the post-transcriptional regulation of acetylcholinesterase in neurons and skeletal muscle cells.
    Deschênes-Furry J; Angus LM; Bélanger G; Mwanjewe J; Jasmin BJ
    Chem Biol Interact; 2005 Dec; 157-158():43-9. PubMed ID: 16242680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-transcriptional regulation of neuro-oncological ventral antigen 1 by the neuronal RNA-binding proteins ELAV.
    Ratti A; Fallini C; Colombrita C; Pascale A; Laforenza U; Quattrone A; Silani V
    J Biol Chem; 2008 Mar; 283(12):7531-41. PubMed ID: 18218628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction.
    Bronicki LM; Jasmin BJ
    RNA; 2013 Aug; 19(8):1019-37. PubMed ID: 23861535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD.
    Deschenes-Furry J; Belanger G; Perrone-Bizzozero N; Jasmin BJ
    J Biol Chem; 2003 Feb; 278(8):5710-7. PubMed ID: 12468554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA.
    Meshorer E; Bryk B; Toiber D; Cohen J; Podoly E; Dori A; Soreq H
    Mol Psychiatry; 2005 Nov; 10(11):985-97. PubMed ID: 16116489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELAV proteins along evolution: back to the nucleus?
    Colombrita C; Silani V; Ratti A
    Mol Cell Neurosci; 2013 Sep; 56():447-55. PubMed ID: 23439364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RNA-binding protein HuD binds acetylcholinesterase mRNA in neurons and regulates its expression after axotomy.
    Deschênes-Furry J; Mousavi K; Bolognani F; Neve RL; Parks RJ; Perrone-Bizzozero NI; Jasmin BJ
    J Neurosci; 2007 Jan; 27(3):665-75. PubMed ID: 17234598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining a neuron: neuronal ELAV proteins.
    Pascale A; Amadio M; Quattrone A
    Cell Mol Life Sci; 2008 Jan; 65(1):128-40. PubMed ID: 17928954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus.
    Watanabe T; Aonuma H
    Insect Mol Biol; 2014 Feb; 23(1):26-41. PubMed ID: 24382152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA and neuronal function: the importance of post-transcriptional regulation.
    Bhat VD; Jayaraj J; Babu K
    Oxf Open Neurosci; 2022; 1():kvac011. PubMed ID: 38596700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtues and woes of AChE alternative splicing in stress-related neuropathologies.
    Meshorer E; Soreq H
    Trends Neurosci; 2006 Apr; 29(4):216-24. PubMed ID: 16516310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulated splicing-associated gene expression in P19 cells expressing distinct acetylcholinesterase splice variants.
    Ben-Ari S; Toiber D; Sas AS; Soreq H; Ben-Shaul Y
    J Neurochem; 2006 Apr; 97 Suppl 1():24-34. PubMed ID: 16635247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target.
    Shaltiel G; Hanan M; Wolf Y; Barbash S; Kovalev E; Shoham S; Soreq H
    Brain Struct Funct; 2013 Jan; 218(1):59-72. PubMed ID: 22246100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA-binding protein HuR binds to acetylcholinesterase transcripts and regulates their expression in differentiating skeletal muscle cells.
    Deschênes-Furry J; Bélanger G; Mwanjewe J; Lunde JA; Parks RJ; Perrone-Bizzozero N; Jasmin BJ
    J Biol Chem; 2005 Jul; 280(27):25361-8. PubMed ID: 15878846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control levels of acetylcholinesterase expression in the mammalian skeletal muscle.
    Grubic Z; Zajc-Kreft K; Brank M; Mars T; Komel R; Miranda AF
    Chem Biol Interact; 1999 May; 119-120():309-19. PubMed ID: 10421466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation.
    Nijholt I; Farchi N; Kye M; Sklan EH; Shoham S; Verbeure B; Owen D; Hochner B; Spiess J; Soreq H; Blank T
    Mol Psychiatry; 2004 Feb; 9(2):174-83. PubMed ID: 14581933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse.
    Marrero E; Rossi SG; Darr A; Tsoulfas P; Rotundo RL
    J Biol Chem; 2011 Oct; 286(42):36492-9. PubMed ID: 21865157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing Interactions of RNA-Binding Proteins, MicroRNAs, and Their Targets Control Neuronal Development and Function.
    Gardiner AS; Twiss JL; Perrone-Bizzozero NI
    Biomolecules; 2015 Oct; 5(4):2903-18. PubMed ID: 26512708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cis-acting elements involved in acetylcholinesterase RNA alternative splicing.
    Guerra M; Dobbertin A; Legay C
    Mol Cell Neurosci; 2008 May; 38(1):1-14. PubMed ID: 18313329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.