BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22462115)

  • 1. Instrumental variables vs. grouping approach for reducing bias due to measurement error.
    Batistatou E; McNamee R
    Int J Biostat; 2008; 4(1):Article 8. PubMed ID: 22462115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of bias-correction methods for exposure measurement error using repeated measurements with and without missing data.
    Batistatou E; McNamee R
    Stat Med; 2012 Dec; 31(28):3467-80. PubMed ID: 22733598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bias testing, bias correction, and confounder selection using an instrumental variable model.
    Yeob Choi B; Fine JP; Alan Brookhart M
    Stat Med; 2020 Dec; 39(29):4386-4404. PubMed ID: 32854161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some cautions on the use of instrumental variables estimators in outcomes research: how bias in instrumental variables estimators is affected by instrument strength, instrument contamination, and sample size.
    Crown WH; Henk HJ; Vanness DJ
    Value Health; 2011 Dec; 14(8):1078-84. PubMed ID: 22152177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.
    Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S
    J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximizing accuracy and precision using individual and grouped exposure assessments.
    Seixas NS; Sheppard L
    Scand J Work Environ Health; 1996 Apr; 22(2):94-101. PubMed ID: 8738886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumental variables: application and limitations.
    Martens EP; Pestman WR; de Boer A; Belitser SV; Klungel OH
    Epidemiology; 2006 May; 17(3):260-7. PubMed ID: 16617274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation methods with ordered exposure subject to measurement error and missingness in semi-ecological design.
    Kim HM; Park CG; van Tongeren M; Burstyn I
    BMC Med Res Methodol; 2012 Sep; 12():135. PubMed ID: 22947254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can we make smart choices between OLS and contaminated IV methods?
    Basu A; Chan KC
    Health Econ; 2014 Apr; 23(4):462-72. PubMed ID: 23765683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Measurement errors and linear regression].
    Marques-Vidal P; Rakotovao R; Ducimetière P
    Rev Epidemiol Sante Publique; 1994; 42(1):58-67. PubMed ID: 8134667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed evaluation of adjustment methods for multiplicative measurement error in linear regression with applications in occupational epidemiology.
    Lyles RH; Kupper LL
    Biometrics; 1997 Sep; 53(3):1008-25. PubMed ID: 9290228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression calibration for dichotomized mismeasured predictors.
    Natarajan L
    Int J Biostat; 2009; 5(1):Article 12. PubMed ID: 20046953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.
    Kilian R; Matschinger H; Löeffler W; Roick C; Angermeyer MC
    J Ment Health Policy Econ; 2002 Mar; 5(1):21-31. PubMed ID: 12529567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjustment for baseline measurement error in randomized controlled trials induces bias.
    Chan SF; Macaskill P; Irwig L; Walter SD
    Control Clin Trials; 2004 Aug; 25(4):408-16. PubMed ID: 15296815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bias correction by use of errors-in-variables regression models in studies with K-X-ray fluorescence bone lead measurements.
    Lamadrid-Figueroa H; Téllez-Rojo MM; Angeles G; Hernández-Ávila M; Hu H
    Environ Res; 2011 Jan; 111(1):17-20. PubMed ID: 21092947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis approaches to address treatment nonadherence in pragmatic trials with point-treatment settings: a simulation study.
    Hossain MB; Mosquera L; Karim ME
    BMC Med Res Methodol; 2022 Feb; 22(1):46. PubMed ID: 35172746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When should one adjust for measurement error in baseline variables in observational studies?
    Walter SD; Forbes A; Chan S; Macaskill P; Irwig L
    Biom J; 2011 Feb; 53(1):28-39. PubMed ID: 21259307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the potential of measurement error to induce differential bias on odds ratio estimates: an example from radon epidemiology.
    Heid IM; Küchenhoff H; Wellmann J; Gerken M; Kreienbrock L; Wichmann HE
    Stat Med; 2002 Nov; 21(21):3261-78. PubMed ID: 12375303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.