BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22462611)

  • 1. Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine.
    Tinta T; Christiansen LS; Konrad A; Liberles DA; Turk V; Munch-Petersen B; Piškur J; Clausen AR
    FEMS Microbiol Lett; 2012 Jun; 331(2):120-7. PubMed ID: 22462611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana.
    Clausen AR; Girandon L; Ali A; Knecht W; Rozpedowska E; Sandrini MP; Andreasson E; Munch-Petersen B; Piškur J
    FEBS J; 2012 Oct; 279(20):3889-97. PubMed ID: 22897443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dictyostelium discoideum salvages purine deoxyribonucleosides by highly specific bacterial-like deoxyribonucleoside kinases.
    Sandrini MP; Söderbom F; Mikkelsen NE; Piskur J
    J Mol Biol; 2007 Jun; 369(3):653-64. PubMed ID: 17448496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation.
    Knecht W; Petersen GE; Munch-Petersen B; Piskur J
    J Mol Biol; 2002 Jan; 315(4):529-40. PubMed ID: 11812127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The global distribution and evolution of deoxyribonucleoside kinases in bacteria.
    Konrad A; Yarunova E; Tinta T; Piškur J; Liberles DA
    Gene; 2012 Jan; 492(1):117-20. PubMed ID: 22057012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa.
    Konrad A; Lai J; Mutahir Z; Piškur J; Liberles DA
    J Mol Evol; 2014 Apr; 78(3-4):202-16. PubMed ID: 24500774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thymidine kinases in archaea.
    Clausen AR; Matakos A; Sandrini MP; Piskur J
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1159-63. PubMed ID: 17065082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of residues involved in the specificity and regulation of the highly efficient multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster.
    Knecht W; Munch-Petersen B; Piskur J
    J Mol Biol; 2000 Aug; 301(4):827-37. PubMed ID: 10966789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner.
    Sandrini MP; Clausen AR; On SL; Aarestrup FM; Munch-Petersen B; Piskur J
    J Antimicrob Chemother; 2007 Sep; 60(3):510-20. PubMed ID: 17615154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities.
    Gerth ML; Lutz S
    J Mol Biol; 2007 Jul; 370(4):742-51. PubMed ID: 17543337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four deoxynucleoside kinase activities from Drosophila melanogaster are contained within a single monomeric enzyme, a new multifunctional deoxynucleoside kinase.
    Munch-Petersen B; Piskur J; Sondergaard L
    J Biol Chem; 1998 Feb; 273(7):3926-31. PubMed ID: 9461577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multisubstrate deoxyribonucleoside kinase from plants.
    Clausen AR; Girandon L; Knecht W; Survery S; Andreasson E; Munch-Petersen B; Piskur J
    Nucleic Acids Symp Ser (Oxf); 2008; (52):489-90. PubMed ID: 18776467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction.
    Sandrini MP; Piskur J
    Trends Biochem Sci; 2005 May; 30(5):225-8. PubMed ID: 15896737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships for phosphorylation of nucleoside analogs to monophosphates by nucleoside kinases.
    Johansson NG; Eriksson S
    Acta Biochim Pol; 1996; 43(1):143-60. PubMed ID: 8790720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plants salvage deoxyribonucleosides in mitochondria.
    Clausen AR; Mutahir Z; Munch-Petersen B; Piškur J
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):291-5. PubMed ID: 24940682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel deoxynucleoside-phosphorylating enzymes in mycoplasmas: evidence for efficient utilization of deoxynucleosides.
    Wang L; Westberg J; Bölske G; Eriksson S
    Mol Microbiol; 2001 Nov; 42(4):1065-73. PubMed ID: 11737647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymidine kinase diversity in bacteria.
    Sandrini MP; Clausen AR; Munch-Petersen B; Piskur J
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1153-8. PubMed ID: 17065081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of deoxyribonucleosides into DNA of coryneform bacteria and the relevance of deoxyribonucleoside kinases.
    Auling G; Prelle H; Diekmann H
    Eur J Biochem; 1982 Jan; 121(2):365-70. PubMed ID: 6277626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines.
    Knecht W; Sandrini MP; Johansson K; Eklund H; Munch-Petersen B; Piskur J
    EMBO J; 2002 Apr; 21(7):1873-80. PubMed ID: 11927571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian deoxyribonucleoside kinases.
    Arnér ES; Eriksson S
    Pharmacol Ther; 1995; 67(2):155-86. PubMed ID: 7494863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.