These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22462886)

  • 21. Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes.
    Barone V; Peralta JE; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jan; 124(2):024709. PubMed ID: 16422628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment.
    Fujisawa K; Tojo T; Muramatsu H; Elías AL; Vega-Díaz SM; Tristán-López F; Kim JH; Hayashi T; Kim YA; Endo M; Terrones M
    Nanoscale; 2011 Oct; 3(10):4359-64. PubMed ID: 21909584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions.
    Sharma R; Rez P; Treacy MM; Stuart SJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):231-7. PubMed ID: 16123070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypothetical toroidal, cylindrical, and helical analogs of C60.
    Chuang C; Jin BY
    J Mol Graph Model; 2009 Oct; 28(3):220-5. PubMed ID: 19733491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-rolled nanotubes with controlled hollow interiors by patterned grafts.
    Han M; Hyun J; Sim E
    Soft Matter; 2015 May; 11(18):3714-23. PubMed ID: 25833200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure of suspended graphene sheets.
    Meyer JC; Geim AK; Katsnelson MI; Novoselov KS; Booth TJ; Roth S
    Nature; 2007 Mar; 446(7131):60-3. PubMed ID: 17330039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aromaticity of carbon nanotubes.
    Linert W; Lukovits I
    J Chem Inf Model; 2007; 47(3):887-90. PubMed ID: 17465521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?
    Denis PA; Faccio R; Mombru AW
    Chemphyschem; 2009 Mar; 10(4):715-22. PubMed ID: 19189365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A crystal-structural study of Pauling-Corey rippled sheets.
    Kuhn AJ; Ehlke B; Johnstone TC; Oliver SRJ; Raskatov JA
    Chem Sci; 2022 Jan; 13(3):671-680. PubMed ID: 35173931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the support on stabilizing local defects in strained monolayer oxide films.
    Wang S; Hu X; Goniakowski J; Noguera C; Castell MR
    Nanoscale; 2019 Jan; 11(5):2412-2422. PubMed ID: 30667032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the applicability of cluster models to study the chemical reactivity of carbon nanotubes.
    Denis PA; Iribarne F
    J Comput Chem; 2011 Aug; 32(11):2397-403. PubMed ID: 21598274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence.
    Xu Z; Li H; Fujisawa K; Kim YA; Endo M; Ding F
    Nanoscale; 2012 Jan; 4(1):130-6. PubMed ID: 22033549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
    Das S; Wajid AS; Shelburne JL; Liao YC; Green MJ
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1844-51. PubMed ID: 21539387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pentaheptite modifications of the graphite sheet.
    Deza M; Fowler PW; Shtogrin M; Vietze K
    J Chem Inf Comput Sci; 2000; 40(6):1325-32. PubMed ID: 11128090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials.
    Tian L; Anilkumar P; Cao L; Kong CY; Meziani MJ; Qian H; Veca LM; Thorne TJ; Tackett KN; Edwards T; Sun YP
    ACS Nano; 2011 Apr; 5(4):3052-8. PubMed ID: 21405144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The rippled β-sheet layer configuration-a novel supramolecular architecture based on predictions by Pauling and Corey.
    Hazari A; Sawaya MR; Vlahakis N; Johnstone TC; Boyer D; Rodriguez J; Eisenberg D; Raskatov JA
    Chem Sci; 2022 Aug; 13(31):8947-8952. PubMed ID: 36091211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of Heptagon-Containing Molecular Nanocarbons.
    Chaolumen ; Stepek IA; Yamada KE; Ito H; Itami K
    Angew Chem Int Ed Engl; 2021 Oct; 60(44):23508-23532. PubMed ID: 33547701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.