These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22463003)

  • 1. Multi-parameter identification from scalar time series generated by a Malkus-Lorenz water wheel.
    Illing L; Saunders AM; Hahs D
    Chaos; 2012 Mar; 22(1):013127. PubMed ID: 22463003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical parameter identification from a scalar time series.
    Yu D; Liu F
    Chaos; 2008 Dec; 18(4):043108. PubMed ID: 19123618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using synchronization of chaos to identify the dynamics of unknown systems.
    Sorrentino F; Ott E
    Chaos; 2009 Sep; 19(3):033108. PubMed ID: 19791988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying parameter by identical synchronization between different systems.
    Huang D; Guo R
    Chaos; 2004 Mar; 14(1):152-9. PubMed ID: 15003056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A class of Lorenz-like systems.
    Lainscsek C
    Chaos; 2012 Mar; 22(1):013126. PubMed ID: 22463002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking.
    Ge ZM; Yang CH
    Chaos; 2008 Dec; 18(4):043129. PubMed ID: 19123639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A decentralized adaptive robust method for chaos control.
    Kobravi HR; Erfanian A
    Chaos; 2009 Sep; 19(3):033111. PubMed ID: 19791991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter estimation of nonlinear dynamical systems based on integrator theory.
    Peng H; Li L; Yang Y; Wang C
    Chaos; 2009 Sep; 19(3):033130. PubMed ID: 19792010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust synchronization of chaotic systems subject to parameter uncertainties.
    Huang H; Feng G; Sun Y
    Chaos; 2009 Sep; 19(3):033128. PubMed ID: 19792008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust extremes in chaotic deterministic systems.
    Vitolo R; Holland MP; Ferro CA
    Chaos; 2009 Dec; 19(4):043127. PubMed ID: 20059223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model.
    Freire JG; Bonatto C; DaCamara CC; Gallas JA
    Chaos; 2008 Sep; 18(3):033121. PubMed ID: 19045459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the asymmetric Malkus waterwheel: the biased Lorenz equations.
    Mishra AA; Sanghi S
    Chaos; 2006 Mar; 16(1):013114. PubMed ID: 16599745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel synchronization of discrete-time chaotic systems using neural network observer.
    Naghavi SV; Safavi AA
    Chaos; 2008 Sep; 18(3):033110. PubMed ID: 19045448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of fast state observers using a backstepping-like approach with application to synchronization of chaotic systems.
    Zaher AA
    Chaos; 2008 Jun; 18(2):023114. PubMed ID: 18601481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State and parameter estimation using unconstrained optimization.
    Schumann-Bischoff J; Parlitz U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056214. PubMed ID: 22181491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.
    Sigalov G; Gendelman OV; AL-Shudeifat MA; Manevitch LI; Vakakis AF; Bergman LA
    Chaos; 2012 Mar; 22(1):013118. PubMed ID: 22462994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
    Xu D; Lu F
    Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization and chaotic dynamics of coupled mechanical metronomes.
    Ulrichs H; Mann A; Parlitz U
    Chaos; 2009 Dec; 19(4):043120. PubMed ID: 20059216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase space method for identification of driven nonlinear systems.
    Carroll TL
    Chaos; 2009 Sep; 19(3):033121. PubMed ID: 19792001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.