These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 22463024)

  • 41. Multispot point spread function for multiphoton fluorescence microscopy.
    Mondal PP
    Rev Sci Instrum; 2009 Sep; 80(9):096104. PubMed ID: 19791975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging.
    Duan C; Sun J; Samuelson S; Xie H
    Appl Opt; 2013 Sep; 52(26):6589-98. PubMed ID: 24085137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined two-photon microscopy and optical coherence tomography using individually optimized sources.
    Jeong B; Lee B; Jang MS; Nam H; Yoon SJ; Wang T; Doh J; Yang BG; Jang MH; Kim KH
    Opt Express; 2011 Jul; 19(14):13089-96. PubMed ID: 21747461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.
    Yih JN; Hu YY; Sie YD; Cheng LC; Lien CH; Chen SJ
    Opt Lett; 2014 Jun; 39(11):3134-7. PubMed ID: 24875995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor.
    Chen T; Zhang N; Huo T; Wang C; Zheng JG; Zhou T; Xue P
    J Biomed Opt; 2013 Aug; 18(8):86011. PubMed ID: 23955393
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laser spectral characterization in multiphoton microscopy.
    Quercioli F; Tiribilli B; Vassalli M; Ghirelli A
    Appl Opt; 2004 May; 43(15):3055-60. PubMed ID: 15176192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oversampled triangulation of AWARE-10 monocentric ball lens using an auto-stigmatic microscope.
    Son HS; Marks DL; Brady DJ; Kim J
    Opt Express; 2013 Sep; 21(19):22206-14. PubMed ID: 24104112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Axial plane optical microscopy.
    Li T; Ota S; Kim J; Wong ZJ; Wang Y; Yin X; Zhang X
    Sci Rep; 2014 Dec; 4():7253. PubMed ID: 25434770
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep tissue multiphoton microscopy using longer wavelength excitation.
    Kobat D; Durst ME; Nishimura N; Wong AW; Schaffer CB; Xu C
    Opt Express; 2009 Aug; 17(16):13354-64. PubMed ID: 19654740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.
    Martini N; Bewersdorf J; Hell SW
    J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectral-domain optical coherence phase and multiphoton microscopy.
    Joo C; Kim KH; de Boer JF
    Opt Lett; 2007 Mar; 32(6):623-5. PubMed ID: 17308581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
    Yang Y; Zhang L; Wang Z; Liang B; Barbera G; Moffitt C; Li Y; Lin DT
    Neurosci Bull; 2019 Jun; 35(3):419-424. PubMed ID: 30852804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.
    Wen W; Wang Y; Liu H; Wang K; Qiu P; Wang K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28766923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and implementation of a sensitive high-resolution nonlinear spectral imaging microscope.
    Palero JA; Latouche G; de Bruijn HS; van der Ploeg van den Heuvel A; Sterenborg HJ; Gerritsen HC
    J Biomed Opt; 2008; 13(4):044019. PubMed ID: 19021347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo confocal and multiphoton microendoscopy.
    Kim P; Puoris'haag M; Côté D; Lin CP; Yun SH
    J Biomed Opt; 2008; 13(1):010501. PubMed ID: 18315346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens.
    Le Harzic R; Weinigel M; Riemann I; König K; Messerschmidt B
    Opt Express; 2008 Dec; 16(25):20588-96. PubMed ID: 19065197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiphoton gradient index endoscopy for evaluation of diseased human prostatic tissue ex vivo.
    Huland DM; Jain M; Ouzounov DG; Robinson BD; Harya DS; Shevchuk MM; Singhal P; Xu C; Tewari AK
    J Biomed Opt; 2014 Nov; 19(11):116011. PubMed ID: 25415446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-photon imaging using adaptive phase compensated ultrashort laser pulses.
    Xi P; Andegeko Y; Pestov D; Lovozoy VV; Dantus M
    J Biomed Opt; 2009; 14(1):014002. PubMed ID: 19256690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-field-of-view imaging by multi-pupil adaptive optics.
    Park JH; Kong L; Zhou Y; Cui M
    Nat Methods; 2017 Jun; 14(6):581-583. PubMed ID: 28481364
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonmechanical zoom system through pressure-controlled tunable fluidic lenses.
    Savidis N; Peyman G; Peyghambarian N; Schwiegerling J
    Appl Opt; 2013 Apr; 52(12):2858-65. PubMed ID: 23669698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.