These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 22463024)

  • 81. Ultra-large field-of-view two-photon microscopy.
    Tsai PS; Mateo C; Field JJ; Schaffer CB; Anderson ME; Kleinfeld D
    Opt Express; 2015 Jun; 23(11):13833-47. PubMed ID: 26072755
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Bendable long graded index lens microendoscopy.
    Liu G; Kang JW; Bhagavatula S; Ahn SW; So PTC; Tearney GJ; Jonas O
    Opt Express; 2022 Sep; 30(20):36651-36664. PubMed ID: 36258589
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser.
    Brenner MH; Cai D; Swanson JA; Ogilvie JP
    Opt Express; 2013 Jul; 21(14):17256-64. PubMed ID: 23938572
    [TBL] [Abstract][Full Text] [Related]  

  • 84. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens.
    Serov A; Rao R; Gösch M; Anhut T; Martin D; Brunner R; Rigler R; Lasser T
    Biosens Bioelectron; 2004 Oct; 20(3):431-5. PubMed ID: 15494221
    [TBL] [Abstract][Full Text] [Related]  

  • 85. MEMS compatible micro-GRIN lenses for fiber to chip coupling of light.
    Zickar M; Noell W; Marxer C; de Rooij N
    Opt Express; 2006 May; 14(10):4237-49. PubMed ID: 19516576
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Optical detection and sizing of single nanoparticles using continuous wetting films.
    Hennequin Y; Allier CP; McLeod E; Mudanyali O; Migliozzi D; Ozcan A; Dinten JM
    ACS Nano; 2013 Sep; 7(9):7601-9. PubMed ID: 23889001
    [TBL] [Abstract][Full Text] [Related]  

  • 87. 4Pi spectral self-interference microscopy.
    Davis BJ; Dogan M; Goldberg BB; Karl WC; Unlü MS; Swan AK
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3762-71. PubMed ID: 18059929
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Depth of field extension with spherical optics.
    Mouroulis P
    Opt Express; 2008 Aug; 16(17):12995-3004. PubMed ID: 18711538
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe.
    Hoy CL; Ferhanoğlu O; Yildirim M; Piyawattanametha W; Ra H; Solgaard O; Ben-Yakar A
    Opt Express; 2011 May; 19(11):10536-52. PubMed ID: 21643308
    [TBL] [Abstract][Full Text] [Related]  

  • 90. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope.
    Flusberg BA; Jung JC; Cocker ED; Anderson EP; Schnitzer MJ
    Opt Lett; 2005 Sep; 30(17):2272-4. PubMed ID: 16190441
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments.
    Liu HL; Shi Y; Liang L; Li L; Guo SS; Yin L; Yang Y
    Lab Chip; 2017 Mar; 17(7):1280-1286. PubMed ID: 28271103
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Numerical analysis of gradient index lens-based optical coherence tomography imaging probes.
    Jung W; Benalcazar W; Ahmad A; Sharma U; Tu H; Boppart SA
    J Biomed Opt; 2010; 15(6):066027. PubMed ID: 21198201
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy.
    Leray A; Lillis K; Mertz J
    Biophys J; 2008 Feb; 94(4):1449-58. PubMed ID: 17951295
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Adaptive aberration correction of GRIN lenses for confocal endomicroscopy.
    Lee WM; Yun SH
    Opt Lett; 2011 Dec; 36(23):4608-10. PubMed ID: 22139258
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Geometry-invariant GRIN lens: iso-dispersive contours.
    Bahrami M; Goncharov AV
    Biomed Opt Express; 2012 Jul; 3(7):1684-700. PubMed ID: 22808438
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser.
    Sakadzić S; Demirbas U; Mempel TR; Moore A; Ruvinskaya S; Boas DA; Sennaroglu A; Kaertner FX; Fujimoto JG
    Opt Express; 2008 Dec; 16(25):20848-63. PubMed ID: 19065223
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Three-dimensional differential interference contrast microscopy using synthetic aperture imaging.
    Kim M; Choi Y; Fang-Yen C; Sung Y; Kim K; Dasari RR; Feld MS; Choi W
    J Biomed Opt; 2012 Feb; 17(2):026003. PubMed ID: 22463035
    [TBL] [Abstract][Full Text] [Related]  

  • 98. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions.
    Shao L; Isaac B; Uzawa S; Agard DA; Sedat JW; Gustafsson MG
    Biophys J; 2008 Jun; 94(12):4971-83. PubMed ID: 18326649
    [TBL] [Abstract][Full Text] [Related]  

  • 99. MEMS-based handheld confocal microscope for in-vivo skin imaging.
    Arrasmith CL; Dickensheets DL; Mahadevan-Jansen A
    Opt Express; 2010 Feb; 18(4):3805-19. PubMed ID: 20389391
    [TBL] [Abstract][Full Text] [Related]  

  • 100. High-resolution intravital imaging of the murine hypothalamus using GRIN lenses and confocal microscopy.
    Butiaeva LI; Kokoeva MV
    STAR Protoc; 2022 Mar; 3(1):101193. PubMed ID: 35243378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.