These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22463034)

  • 1. Effect of tissue optics on wavelength optimization for quantum dot-based surface and subsurface fluorescence imaging.
    Roy M; Dadani F; Niu CJ; Kim A; Wilson BC
    J Biomed Opt; 2012 Feb; 17(2):026002. PubMed ID: 22463034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast.
    Roy M; Kim A; Dadani F; Wilson BC
    J Biomed Opt; 2011; 16(1):016013. PubMed ID: 21280919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid spectrally encoded fluorescence imaging using a wavelength-swept source.
    Strupler M; Montigny ED; Morneau D; Boudoux C
    Opt Lett; 2010 Jun; 35(11):1737-9. PubMed ID: 20517399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of minimum doses for optimized quantum dot contrast-enhanced vascular imaging in vivo.
    Roy M; Niu CJ; Chen Y; McVeigh PZ; Shuhendler AJ; Leung MK; Mariampillai A; DaCosta RS; Wilson BC
    Small; 2012 Jun; 8(11):1780-92. PubMed ID: 22431228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging.
    Mansfield JR; Gossage KW; Hoyt CC; Levenson RM
    J Biomed Opt; 2005; 10(4):41207. PubMed ID: 16178631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced fluorescence emission from quantum dots on a photonic crystal surface.
    Ganesh N; Zhang W; Mathias PC; Chow E; Soares JA; Malyarchuk V; Smith AD; Cunningham BT
    Nat Nanotechnol; 2007 Aug; 2(8):515-20. PubMed ID: 18654350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot imaging for embryonic stem cells.
    Lin S; Xie X; Patel MR; Yang YH; Li Z; Cao F; Gheysens O; Zhang Y; Gambhir SS; Rao JH; Wu JC
    BMC Biotechnol; 2007 Oct; 7():67. PubMed ID: 17925032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation.
    Gebhart SC; Thompson RC; Mahadevan-Jansen A
    Appl Opt; 2007 Apr; 46(10):1896-910. PubMed ID: 17356636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of excitation light rejection on forward model mismatch in optical tomography.
    Hwang K; Pan T; Joshi A; Rasmussen JC; Bangerth W; Sevick-Muraca EM
    Phys Med Biol; 2006 Nov; 51(22):5889-902. PubMed ID: 17068371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth parameter optimization for fast quantum dot SESAMs.
    Maas DJ; Bellancourt AR; Hoffmann M; Rudin B; Barbarin Y; Golling M; Südmeyer T; Keller U
    Opt Express; 2008 Nov; 16(23):18646-56. PubMed ID: 19581950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stroboscopic fluorescence lifetime imaging.
    Holton MD; Silvestre OR; Errington RJ; Smith PJ; Matthews DR; Rees P; Summers HD
    Opt Express; 2009 Mar; 17(7):5205-16. PubMed ID: 19333284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the clinical application of time-domain fluorescence lifetime imaging.
    Munro I; McGinty J; Galletly N; Requejo-Isidro J; Lanigan PM; Elson DS; Dunsby C; Neil MA; Lever MJ; Stamp GW; French PM
    J Biomed Opt; 2005; 10(5):051403. PubMed ID: 16292940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive assessment of cutaneous wound healing using fluorescent imaging.
    Lee O; Kim J; Park G; Kim M; Son S; Ha S; Oh C
    Skin Res Technol; 2015 Feb; 21(1):108-13. PubMed ID: 25066671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and implementation of a sensitive high-resolution nonlinear spectral imaging microscope.
    Palero JA; Latouche G; de Bruijn HS; van der Ploeg van den Heuvel A; Sterenborg HJ; Gerritsen HC
    J Biomed Opt; 2008; 13(4):044019. PubMed ID: 19021347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging.
    DeVore MS; Stich DG; Keller AM; Cleyrat C; Phipps ME; Hollingsworth JA; Lidke DS; Wilson BS; Goodwin PM; Werner JH
    Rev Sci Instrum; 2015 Dec; 86(12):126102. PubMed ID: 26724083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New fluorescence imaging probe with high spatial resolution for in vivo applications.
    Bonnans V; Gharbi T; Pieralli C; Wacogne B; Humbert P
    J Biomed Opt; 2004; 9(5):928-33. PubMed ID: 15447013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral- and frequency-encoded fluorescence imaging.
    Motz JT; Yelin D; Vakoc BJ; Bouma BE; Tearney GJ
    Opt Lett; 2005 Oct; 30(20):2760-2. PubMed ID: 16252766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy.
    Chung E; Kim D; So PT
    Opt Lett; 2006 Apr; 31(7):945-7. PubMed ID: 16599220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.