These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22463132)

  • 1. Technologies and combination therapies for enhancing movement training for people with a disability.
    Reinkensmeyer DJ; Boninger ML
    J Neuroeng Rehabil; 2012 Mar; 9():17. PubMed ID: 22463132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of motor rehabilitation through the use of information technologies.
    Liebermann DG; Buchman AS; Franks IM
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):8-20. PubMed ID: 16198463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elbow functional compensation using a lightweight magnetorheological clutch.
    Clemente AM; Caballero AF; Rojas DB; Copaci DS; Lorente LM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5215-8. PubMed ID: 22255513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guest editorial: Advances in control of multi-functional powered upper-limb prostheses.
    Nazarpour K; Cipriani C; Farina D; Kuiken T
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):711-5. PubMed ID: 25143995
    [No Abstract]   [Full Text] [Related]  

  • 6. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechatronic device for the rehabilitation of ankle motor function.
    Bucca G; Bezzolato A; Bruni S; Molteni F
    J Biomech Eng; 2009 Dec; 131(12):125001. PubMed ID: 20524738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trajectory planning of a robot for lower limb rehabilitation.
    Pei Y; Kim Y; Obinata G; Hase K; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1259-63. PubMed ID: 22254545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions.
    Edwards T; Pilutti LA
    Mult Scler Relat Disord; 2017 Aug; 16():31-39. PubMed ID: 28755682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors.
    O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M
    J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent trends for practical rehabilitation robotics, current challenges and the future.
    Yakub F; Md Khudzari AZ; Mori Y
    Int J Rehabil Res; 2014 Mar; 37(1):9-21. PubMed ID: 24126254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Technological advances in neurorehabilitation].
    Gutiérrez-Martínez J; Núñez-Gaona MA; Carrillo-Mora P
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S8-23. PubMed ID: 25264802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The place of robotics in post-stroke rehabilitation.
    Rosati G
    Expert Rev Med Devices; 2010 Nov; 7(6):753-8. PubMed ID: 21050086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of smart homes- present state and future challenges.
    Chan M; Estève D; Escriba C; Campo E
    Comput Methods Programs Biomed; 2008 Jul; 91(1):55-81. PubMed ID: 18367286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics.
    Popović DB; Popović MB
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2146-9. PubMed ID: 17946941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing rehabilitation of motor deficits with peripheral nerve stimulation.
    Kaelin-Lang A
    NeuroRehabilitation; 2008; 23(1):89-93. PubMed ID: 18356592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.