These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22463165)

  • 21. Modeling walker synchronization on the Millennium Bridge.
    Eckhardt B; Ott E; Strogatz SH; Abrams DM; McRobie A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021110. PubMed ID: 17358316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Empirical analysis of the lane formation process in bidirectional pedestrian flow.
    Feliciani C; Nishinari K
    Phys Rev E; 2016 Sep; 94(3-1):032304. PubMed ID: 27739694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mathematical model for fluid shear-sensitive 3D tissue construct development.
    Liu D; Chua CK; Leong KF
    Biomech Model Mechanobiol; 2013 Jan; 12(1):19-31. PubMed ID: 22314710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context.
    Monteagudo Á; Santos J
    Biosystems; 2014 Jan; 115():46-58. PubMed ID: 24262634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Friction effects and clogging in a cellular automaton model for pedestrian dynamics.
    Kirchner A; Nishinari K; Schadschneider A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056122. PubMed ID: 12786235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pedestrian head impact conditions depending on the vehicle front shape and its construction--full model simulation.
    Okamoto Y; Sugimoto T; Enomoto K; Kikuchi J
    Traffic Inj Prev; 2003 Mar; 4(1):74-82. PubMed ID: 14522665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A statistical approach to the identification of diploid cellular automata based on incomplete observations.
    Bołt W; Bołt A; Wolnik B; Baetens JM; De Baets B
    Biosystems; 2019 Dec; 186():103976. PubMed ID: 31152774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asynchronous adaptive time step in quantitative cellular automata modeling.
    Zhu H; Pang PY; Sun Y; Dhar P
    BMC Bioinformatics; 2004 Jun; 5():85. PubMed ID: 15222901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A probabilistic model of cardiac electrical activity based on a cellular automata system].
    Alonso Atienza F; Requena Carrión J; García Alberola A; Rojo Alvarez JL; Sánchez Muñoz JJ; Martínez Sánchez J; Valdés Chávarri M
    Rev Esp Cardiol; 2005 Jan; 58(1):41-7. PubMed ID: 15680130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the effect of various ISA penetration grades on pedestrian safety by simulation.
    Ma X; Andréasson I
    Accid Anal Prev; 2005 Nov; 37(6):1162-9. PubMed ID: 16061189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field observations to determine the influence of population size, location and individual factors on pedestrian walking speeds.
    Finnis KK; Walton D
    Ergonomics; 2008 Jun; 51(6):827-42. PubMed ID: 18484398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulating and evaluating the local behavior of small pedestrian groups.
    Karamouzas I; Overmars M
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):394-406. PubMed ID: 22241282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LES modelling of flow in a simple airway model.
    Luo XY; Hinton JS; Liew TT; Tan KK
    Med Eng Phys; 2004 Jun; 26(5):403-13. PubMed ID: 15147748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module.
    Meng X; Zhang ZQ; Wu JK; Wong WC; Yu H
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):892-9. PubMed ID: 24557690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pedestrian crash estimation models for signalized intersections.
    Pulugurtha SS; Sambhara VR
    Accid Anal Prev; 2011 Jan; 43(1):439-46. PubMed ID: 21094342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Cellular automata approach to biological pattern formation. (II): The growth pattern of bacterial colonies].
    Zhao F; Tao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):820-3. PubMed ID: 17899753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An open simulation approach to identify chances and limitations for vulnerable road user (VRU) active safety.
    Seiniger P; Bartels O; Pastor C; Wisch M
    Traffic Inj Prev; 2013; 14 Suppl():S2-12. PubMed ID: 23905588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicomponent hydrodynamic model for heterogeneous biofilms: two-dimensional numerical simulations of growth and interaction with flows.
    Lindley B; Wang Q; Zhang T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031908. PubMed ID: 22587124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.
    Chai C; Wong YD
    Accid Anal Prev; 2014 Feb; 63():94-103. PubMed ID: 24275720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaos of elementary cellular automata rule 42 of Wolfram's class II.
    Chen FY; Jin WF; Chen GR; Chen FF; Chen L
    Chaos; 2009 Mar; 19(1):013140. PubMed ID: 19335004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.