These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 22463213)

  • 1. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated silica.
    Saika-Voivod I; Sciortino F; Grande T; Poole PH
    Philos Trans A Math Phys Eng Sci; 2005 Feb; 363(1827):525-33; discussion 534-5. PubMed ID: 15664897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy landscape of a simple model for strong liquids.
    Moreno AJ; Buldyrev SV; La Nave E; Saika-Voivod I; Sciortino F; Tartaglia P; Zaccarelli E
    Phys Rev Lett; 2005 Oct; 95(15):157802. PubMed ID: 16241763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of dynamical heterogeneities and metabasin dynamics in glass forming liquids: the influence of structure on dynamics.
    Appignanesi GA; Rodríguez Fris JA; Frechero MA
    Phys Rev Lett; 2006 Jun; 96(23):237803. PubMed ID: 16803407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of local structure on motions on the potential energy landscape for a model supercooled polymer.
    Jain TS; de Pablo JJ
    J Chem Phys; 2005 May; 122(17):174515. PubMed ID: 15910053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.
    Naumis GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061505. PubMed ID: 23005102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing the viscosity of supercooled liquids.
    Kushima A; Lin X; Li J; Eapen J; Mauro JC; Qian X; Diep P; Yip S
    J Chem Phys; 2009 Jun; 130(22):224504. PubMed ID: 19530777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How coupled elementary units determine the dynamics of macroscopic glass-forming systems.
    Rehwald C; Heuer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051504. PubMed ID: 23214786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercooled liquids: equivalence between mode-coupling theory and the replica approach.
    Rizzo T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022135. PubMed ID: 23496487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of inherent structure in supercooled liquids near kinetic glass transition.
    Liao CY; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031202. PubMed ID: 11580322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.
    Micoulaut M
    J Phys Condens Matter; 2010 Jul; 22(28):285101. PubMed ID: 21399290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation.
    Kawasaki T; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012312. PubMed ID: 23410336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
    Yan L; Düring G; Wyart M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6307-12. PubMed ID: 23576746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: geodesic pathways through the potential energy landscape.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224504. PubMed ID: 18081403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configurational entropy and diffusivity of supercooled water.
    Scala A; Starr FW; La Nave E ; Sciortino F; Stanley HE
    Nature; 2000 Jul; 406(6792):166-9. PubMed ID: 10910351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical dynamics in glassy systems.
    Parisi G; Rizzo T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012101. PubMed ID: 23410277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-exponential activation behavior behind the super-Arrhenius relaxations in glass-forming liquids.
    Wang L; Li J; Fecht HJ
    J Phys Condens Matter; 2010 Nov; 22(45):455104. PubMed ID: 21339624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling protein thermodynamics and fluctuations at the mesoscale.
    Nakagawa N; Peyrard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041916. PubMed ID: 17155105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.