These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22463222)

  • 1. Beyond the constraints underlying Kolmogorov-Johnson-Mehl-Avrami theory related to the growth laws.
    Tomellini M; Fanfoni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021606. PubMed ID: 22463222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?
    González MM; Joa JA; Cabrales LE; Pupo AE; Schneider B; Kondakci S; Ciria HM; Reyes JB; Jarque MV; Mateus MA; González TR; Brooks SC; Cáceres JL; González GV
    BMC Cancer; 2017 Mar; 17(1):174. PubMed ID: 28270135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of approaches based on the differential critical region and correlation functions in modeling phase-transformation kinetics.
    Tomellini M; Fanfoni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052406. PubMed ID: 25493802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model.
    Jun S; Zhang H; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011908. PubMed ID: 15697631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite volume Kolmogorov-Johnson-Mehl-Avrami theory.
    Berg BA; Dubey S
    Phys Rev Lett; 2008 Apr; 100(16):165702. PubMed ID: 18518219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-size distribution and scaling in a one-dimensional Kolmogorov-Johnson-Mehl-Avrami lattice model with continuous nucleation.
    Néda Z; Járai-Szabó F; Boda S
    Phys Rev E; 2017 Oct; 96(4-1):042145. PubMed ID: 29347594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.
    Iwamatsu M
    J Chem Phys; 2008 Feb; 128(8):084504. PubMed ID: 18315058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Order and randomness in Kolmogorov-Johnson-Mehl-Avrami-type phase transitions.
    Fanfoni M; Persichetti L; Tomellini M
    J Phys Condens Matter; 2012 Sep; 24(35):355002. PubMed ID: 22854199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization kinetics of lithium niobate glass: determination of the Johnson-Mehl-Avrami-Kolmogorov parameters.
    Choi HW; Kim YH; Rim YH; Yang YS
    Phys Chem Chem Phys; 2013 Jun; 15(24):9940-6. PubMed ID: 23677338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scenarios of heterogeneous nucleation and growth studied by cell dynamics simulation.
    Iwamatsu M
    J Chem Phys; 2007 Apr; 126(13):134703. PubMed ID: 17430052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal nucleation and cluster-growth kinetics in a model glass under shear.
    Mokshin AV; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021505. PubMed ID: 20866816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of single cell cancer transformation using phase transition theory: application of the Avrami equation.
    Fornalski KW; Dobrzyński L
    Radiat Environ Biophys; 2022 Mar; 61(1):169-175. PubMed ID: 34665303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of plane discrete Poisson-Voronoi tessellations on triangular tiling formed by the Kolmogorov-Johnson-Mehl-Avrami growth of triangular islands.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021602. PubMed ID: 21928994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review on applications of the Avrami equation beyond materials science.
    Shirzad K; Viney C
    J R Soc Interface; 2023 Jun; 20(203):20230242. PubMed ID: 37340781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of first-order phase transitions with correlated nuclei.
    Rickman JM; Barmak K
    Phys Rev E; 2017 Feb; 95(2-1):022121. PubMed ID: 28297925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of volume and surface driven crystallization in thin films.
    Vorobyov Y; Lazarenko P; Sherchenkov A; Vishnyakov N; Ermachikhin A; Kozyukhin S
    J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32325438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of medfly mortality.
    Hirsh AG; Williams RJ; Mehl P
    Exp Gerontol; 1994; 29(2):197-204. PubMed ID: 8026570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires.
    Dubrovskii VG; Sibirev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031604. PubMed ID: 15524531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of time scales in one-dimensional directed nucleation-growth processes.
    Pierobon P; Miné-Hattab J; Cappello G; Viovy JL; Lagomarsino MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061904. PubMed ID: 21230687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation in liquid metals under negative pressures. Molecular dynamics modeling and simulation.
    Bazhirov TT; Norman GE; Stegailov VV
    J Phys Condens Matter; 2008 Mar; 20(11):114113. PubMed ID: 21694206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.