These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 22463240)
1. Macroscopic model of self-propelled bacteria swarming with regular reversals. Gejji R; Lushnikov PM; Alber M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021903. PubMed ID: 22463240 [TBL] [Abstract][Full Text] [Related]
2. Reversals and collisions optimize protein exchange in bacterial swarms. Amiri A; Harvey C; Buchmann A; Christley S; Shrout JD; Aranson IS; Alber M Phys Rev E; 2017 Mar; 95(3-1):032408. PubMed ID: 28415180 [TBL] [Abstract][Full Text] [Related]
3. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Lushnikov PM; Chen N; Alber M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061904. PubMed ID: 19256865 [TBL] [Abstract][Full Text] [Related]
4. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study. Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992 [TBL] [Abstract][Full Text] [Related]
5. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations. Rana N; Ghosh P; Perlekar P Phys Rev E; 2017 Nov; 96(5-1):052403. PubMed ID: 29347735 [TBL] [Abstract][Full Text] [Related]
6. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology. Macías-Díaz JE; Macías S; Medina-Ramírez IE Comput Biol Chem; 2013 Dec; 47():24-30. PubMed ID: 23850847 [TBL] [Abstract][Full Text] [Related]
7. Bacterial swarming: a re-examination of cell-movement patterns. Kaiser D Curr Biol; 2007 Jul; 17(14):R561-70. PubMed ID: 17637359 [TBL] [Abstract][Full Text] [Related]
8. Exciting traffic jams: nonlinear phenomena behind traffic jam formation on highways. Orosz G; Wilson RE; Szalai R; Stépán G Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046205. PubMed ID: 19905413 [TBL] [Abstract][Full Text] [Related]
9. Synchronized rotation in swarms of magnetotactic bacteria. Belovs M; Livanovičs R; Cēbers A Phys Rev E; 2017 Oct; 96(4-1):042408. PubMed ID: 29347499 [TBL] [Abstract][Full Text] [Related]
10. Theory of periodic swarming of bacteria: application to Proteus mirabilis. Czirók A; Matsushita M; Vicsek T Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031915. PubMed ID: 11308686 [TBL] [Abstract][Full Text] [Related]
11. Approximate solution to the speed of spreading viruses. Ortega-Cejas V; Fort J; Méndez V; Campos D Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031909. PubMed ID: 15089324 [TBL] [Abstract][Full Text] [Related]
12. Modeling a self-propelled autochemotactic walker. Taktikos J; Zaburdaev V; Stark H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041924. PubMed ID: 22181192 [TBL] [Abstract][Full Text] [Related]
13. Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model. Newman JP; Sayama H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011913. PubMed ID: 18763988 [TBL] [Abstract][Full Text] [Related]
14. Emergent states in dense systems of active rods: from swarming to turbulence. Wensink HH; Löwen H J Phys Condens Matter; 2012 Nov; 24(46):464130. PubMed ID: 23114651 [TBL] [Abstract][Full Text] [Related]
15. Developmental waves in myxobacteria: A distinctive pattern formation mechanism. Igoshin OA; Neu J; Oster G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041911. PubMed ID: 15600439 [TBL] [Abstract][Full Text] [Related]
16. Mathematical models for motile bacterial transport in cylindrical tubes. Chen KC; Ford RM; Cummings PT J Theor Biol; 1998 Dec; 195(4):481-504. PubMed ID: 9837704 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional patterns in bacterial veils arise from self-generated, three-dimensional fluid flows. Cogan NG; Wolgemuth CW Bull Math Biol; 2011 Jan; 73(1):212-29. PubMed ID: 20376573 [TBL] [Abstract][Full Text] [Related]
18. Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process. Plaza RG J Math Biol; 2019 May; 78(6):1681-1711. PubMed ID: 30603994 [TBL] [Abstract][Full Text] [Related]
19. Traffic jams, gliders, and bands in the quest for collective motion of self-propelled particles. Peruani F; Klauss T; Deutsch A; Voss-Boehme A Phys Rev Lett; 2011 Mar; 106(12):128101. PubMed ID: 21517352 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamics of bacterial colonies: a model. Lega J; Passot T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031906. PubMed ID: 12689100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]