These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22463259)

  • 21. Shape oscillations of elastic particles in shear flow.
    Subramaniam DR; Gee DJ
    J Mech Behav Biomed Mater; 2016 Sep; 62():534-544. PubMed ID: 27294284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
    Kim Y; Lai MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066321. PubMed ID: 23368052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry.
    Kaliviotis E; Yianneskis M
    Proc Inst Mech Eng H; 2007 Nov; 221(8):887-97. PubMed ID: 18161248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comment on "Tank-treading and tumbling frequencies of capsules and red blood cells".
    Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):058301. PubMed ID: 22181550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial Poiseuille flow.
    Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042709. PubMed ID: 24827280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orientation and dynamics of a vesicle in tank-treading motion in shear flow.
    Kantsler V; Steinberg V
    Phys Rev Lett; 2005 Dec; 95(25):258101. PubMed ID: 16384512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.
    Luo ZY; Wang SQ; He L; Xu F; Bai BF
    Soft Matter; 2013 Oct; 9(40):9651-60. PubMed ID: 26029774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The motion of close-packed red blood cells in shear flow.
    Secomb TW; Fischer TM; Skalak R
    Biorheology; 1983; 20(3):283-94. PubMed ID: 6626713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of the flow-induced deformation of red blood cells.
    Pozrikidis C
    Ann Biomed Eng; 2003 Nov; 31(10):1194-205. PubMed ID: 14649493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red blood cell orientation in orbit C = 0.
    Bitbol M
    Biophys J; 1986 May; 49(5):1055-68. PubMed ID: 3708090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Swinging of red blood cells under shear flow.
    Abkarian M; Faivre M; Viallat A
    Phys Rev Lett; 2007 May; 98(18):188302. PubMed ID: 17501614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
    Quinn DJ; Pivkin I; Wong SY; Chiam KH; Dao M; Karniadakis GE; Suresh S
    Ann Biomed Eng; 2011 Mar; 39(3):1041-50. PubMed ID: 21240637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.