These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22463290)

  • 1. Counting solutions from finite samplings.
    Huang H; Zhou H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026118. PubMed ID: 22463290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communities of solutions in single solution clusters of a random K-satisfiability formula.
    Zhou H; Ma H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066108. PubMed ID: 20365232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains.
    Zhao C; Zhang P; Zheng Z; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016106. PubMed ID: 22400624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From one solution of a 3-satisfiability formula to a solution cluster: frozen variables and entropy.
    Li K; Ma H; Zhou H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031102. PubMed ID: 19391897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibbs states and the set of solutions of random constraint satisfaction problems.
    Krzakała F; Montanari A; Ricci-Tersenghi F; Semerjian G; Zdeborová L
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10318-23. PubMed ID: 17567754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counting the number of solutions in satisfiability problems with tensor-network message passing.
    Wu QH; Wang YJ; Shen ZS; Ye C; Zhang P
    Phys Rev E; 2024 Sep; 110(3-1):034126. PubMed ID: 39425436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entropy landscape and non-Gibbs solutions in constraint satisfaction problems.
    Dall'Asta L; Ramezanpour A; Zecchina R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031118. PubMed ID: 18517340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-size scaling in random K-satisfiability problems.
    Lee SH; Ha M; Jeon C; Jeong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061109. PubMed ID: 21230646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hiding solutions in random satisfiability problems: a statistical mechanics approach.
    Barthel W; Hartmann AK; Leone M; Ricci-Tersenghi F; Weigt M; Zecchina R
    Phys Rev Lett; 2002 May; 88(18):188701. PubMed ID: 12005728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escaping the curse of dimensionality in estimating multivariate transfer entropy.
    Runge J; Heitzig J; Petoukhov V; Kurths J
    Phys Rev Lett; 2012 Jun; 108(25):258701. PubMed ID: 23004667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solution-space analysis of satisfiability problems.
    Mann A; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056702. PubMed ID: 21230614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1/ f noise from the laws of thermodynamics for finite-size fluctuations.
    Chamberlin RV; Nasir DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012142. PubMed ID: 25122286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attractor and basin entropies of random Boolean networks under asynchronous stochastic update.
    Shreim A; Berdahl A; Greil F; Davidsen J; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):035102. PubMed ID: 21230126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse Ising inference using all the data.
    Aurell E; Ekeberg M
    Phys Rev Lett; 2012 Mar; 108(9):090201. PubMed ID: 22463617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of trajectory entropy for continuous stochastic processes at equilibrium.
    Haas KR; Yang H; Chu JW
    J Phys Chem B; 2014 Jul; 118(28):8099-107. PubMed ID: 24780123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic response surface formulation of acoustic propagation through an uncertain ocean waveguide environment.
    Finette S
    J Acoust Soc Am; 2009 Nov; 126(5):2242-7. PubMed ID: 19894805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.
    Inglis S; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximally flexible solutions of a random K-satisfiability formula.
    Zhao H; Zhou HJ
    Phys Rev E; 2020 Jul; 102(1-1):012301. PubMed ID: 32794979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram.
    Wang F; Landau DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal dependence on disorder of two-dimensional randomly diluted and random-bond +/-J Ising models.
    Hasenbusch M; Toldin FP; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011110. PubMed ID: 18763922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.