These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22463297)

  • 1. Plastic bottle oscillator as an on-off-type oscillator: experiments, modeling, and stability analyses of single and coupled systems.
    Kohira MI; Kitahata H; Magome N; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026204. PubMed ID: 22463297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and modeling analysis of asymmetrical on-off oscillation in coupled non-identical inverted bottle oscillators.
    Jia J; Shangguan Z; Li H; Wu Y; Liu W; Xiao J; Kurths J
    Chaos; 2016 Nov; 26(11):116301. PubMed ID: 27907989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization between two weakly coupled delay-line oscillators.
    Levy EC; Horowitz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment.
    Chou CH; Yu T; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators.
    Horváth V; Kutner DJ; Zeng MD; Epstein IR
    Chaos; 2019 Feb; 29(2):023128. PubMed ID: 30823715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of a density oscillator.
    Kano T; Kinoshita S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046217. PubMed ID: 19905425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional hydrodynamic simulation for synchronization in coupled density oscillators.
    Takeda N; Ito H; Kitahata H
    Phys Rev E; 2023 Mar; 107(3-1):034201. PubMed ID: 37073034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiphase and in-phase synchronization of nonlinear oscillators: the Huygens's clocks system.
    Dilão R
    Chaos; 2009 Jun; 19(2):023118. PubMed ID: 19566253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators.
    Blaha KA; Pikovsky A; Rosenblum M; Clark MT; Rusin CG; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046201. PubMed ID: 22181239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isochronal chaos synchronization of delay-coupled optoelectronic oscillators.
    Illing L; Panda CD; Shareshian L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016213. PubMed ID: 21867279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.
    Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General coupled-nonlinear-oscillator model for event-related (de)synchronization.
    Sheeba JH; Chandrasekar VK; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036210. PubMed ID: 22060478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization in counter-rotating oscillators.
    Bhowmick SK; Ghosh D; Dana SK
    Chaos; 2011 Sep; 21(3):033118. PubMed ID: 21974653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetry-induced effects in coupled phase-oscillator ensembles: Routes to synchronization.
    Sheeba JH; Chandrasekar VK; Stefanovska A; McClintock PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046210. PubMed ID: 19518315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimode dynamics in a network with resource mediated coupling.
    Postnov DE; Sosnovtseva OV; Scherbakov P; Mosekilde E
    Chaos; 2008 Mar; 18(1):015114. PubMed ID: 18377095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.