These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22463297)

  • 21. Phase resetting, phase locking, and bistability in the periodically driven saline oscillator: experiment and model.
    González H; Arce H; Guevara MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036217. PubMed ID: 18851131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources.
    Hirata Y; Aono M; Hara M; Aihara K
    Chaos; 2010 Mar; 20(1):013117. PubMed ID: 20370272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Master-slave synchronization in chaotic discrete-time oscillators.
    Schwarz J; Klotz A; Bräuer K; Stevens A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011108. PubMed ID: 11461226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system.
    Song Y; Xu J
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1659-70. PubMed ID: 24808010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fractional oscillator.
    Stanislavsky AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051103. PubMed ID: 15600586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays.
    Fink KS; Johnson G; Carroll T; Mar D; Pecora L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5080-90. PubMed ID: 11031550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental results on synchronization times and stable states in locally coupled light-controlled oscillators.
    Rubido N; Cabeza C; Martí AC; Ramírez Avila GM
    Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3267-80. PubMed ID: 19620123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A design principle underlying the synchronization of oscillations in cellular systems.
    Kim JR; Shin D; Jung SH; Heslop-Harrison P; Cho KH
    J Cell Sci; 2010 Feb; 123(Pt 4):537-43. PubMed ID: 20103537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronization in an ensemble of spatially moving oscillators with linear and nonlinear coupling schemes.
    Janagal L; Parmananda P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056213. PubMed ID: 23214863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual synchronization of chaos in Colpitts electronic oscillators and its applications for communications.
    Uchida A; Kawano M; Yoshimori S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056207. PubMed ID: 14682871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interacting stochastic oscillators.
    Zhang J; Yuan Z; Wang J; Zhou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021101. PubMed ID: 18351981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled oscillators for modeling and analysis of EEG/MEG oscillations.
    Leistritz L; Putsche P; Schwab K; Hesse W; Süsse T; Haueisen J; Witte H
    Biomed Tech (Berl); 2007 Feb; 52(1):83-9. PubMed ID: 17313340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linear Frequency Modulation of NbO
    Lee D; Kwak M; Lee J; Woo J; Hwang H
    Front Neurosci; 2022; 16():939687. PubMed ID: 35844222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-induced stability in a parametric dimer.
    Copelli M; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036605. PubMed ID: 11308786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.
    Blakely JN; Stahl MT; Corron NJ
    Chaos; 2009 Dec; 19(4):043117. PubMed ID: 20059213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Practical time-delay synchronization of a periodically modulated self-excited oscillators with uncertainties.
    Kakmeni FM; Bowong S; Senthikumar DV; Kurths J
    Chaos; 2010 Dec; 20(4):043121. PubMed ID: 21198091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of phase synchronization of coupled chaotic oscillators with empirical mode decomposition.
    Goska A; Krawiecki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046217. PubMed ID: 17155163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of periodic parametric excitation on an ensemble of force-coupled self-oscillators.
    Shchekinova EY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066203. PubMed ID: 20866497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.