BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2246330)

  • 41. Hexose transport after glucose refeeding of glucose-starved human fibroblasts: 1. The effects of tunicamycin and cycloheximide. 2. Insulin binding and action.
    Germinario RJ; Michaelidou A
    Biochem Biophys Res Commun; 1986 Nov; 140(3):844-9. PubMed ID: 3535799
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 2-Deoxyglucose transport and metabolism in Caco-2 cells.
    Bissonnette P; Gagné H; Blais A; Berteloot A
    Am J Physiol; 1996 Jan; 270(1 Pt 1):G153-62. PubMed ID: 8772513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The D-allose operon of Escherichia coli K-12.
    Kim C; Song S; Park C
    J Bacteriol; 1997 Dec; 179(24):7631-7. PubMed ID: 9401019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells.
    Viñals F; Gross A; Testar X; Palacín M; Rösen P; Zorzano A
    Biochim Biophys Acta; 1999 Jun; 1450(2):119-29. PubMed ID: 10354504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sugar transport in Trypanosoma brucei: a suitable kinetic probe.
    Game S; Holman G; Eisenthal R
    FEBS Lett; 1986 Jan; 194(1):126-30. PubMed ID: 3940883
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B. Evidence for a membrane-specific effect.
    Kletzien RF; Perdue JF
    J Biol Chem; 1973 Jan; 248(2):711-9. PubMed ID: 4734334
    [No Abstract]   [Full Text] [Related]  

  • 47. Uncouplers of oxidative phosphorylation promote derepression of the hexose transport system in cultures of hamster cells.
    Kalckar HM; Christopher CW; Ullrey D
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6453-5. PubMed ID: 293732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The inhibitory effect and possible mechanisms of D-allose on cancer cell proliferation.
    Sui L; Dong Y; Watanabe Y; Yamaguchi F; Hatano N; Tsukamoto I; Izumori K; Tokuda M
    Int J Oncol; 2005 Oct; 27(4):907-12. PubMed ID: 16142305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of 5-thio-D-glucose on cellular adenosine triphosphate levels and deoxyribonucleic acid rejoining hy hypoxic and aerobic Chinese hamster cells.
    Nagle WA; Moss AJ; Roberts HG; Baker ML
    Radiology; 1980 Oct; 137(1 Pt 1):203-11. PubMed ID: 7422846
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Syntheses and biological activities of deoxy-d-allose fatty acid ester analogs.
    Chowdhury MT; Ando H; Yanagita RC; Kawanami Y
    Biosci Biotechnol Biochem; 2016; 80(4):676-81. PubMed ID: 26822163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anti-proliferative activity of 6-O-acyl-D-allose against the human leukemia MOLT-4F cell line.
    Yanagita RC; Kobashi K; Ogawa C; Ashida Y; Yamaashi H; Kawanami Y
    Biosci Biotechnol Biochem; 2014; 78(2):190-4. PubMed ID: 25036670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent research on the physiological functions, applications, and biotechnological production of D-allose.
    Chen Z; Chen J; Zhang W; Zhang T; Guang C; Mu W
    Appl Microbiol Biotechnol; 2018 May; 102(10):4269-4278. PubMed ID: 29577167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antiproliferative effects of D-allose associated with reduced cell division frequency in glioblastoma.
    Suzuki K; Ogawa D; Kanda T; Fujimori T; Shibayama Y; Rahman A; Ye J; Ohsaki H; Akimitsu K; Izumori K; Tamiya T; Nishiyama A; Miyake K
    Sci Rep; 2023 Nov; 13(1):19515. PubMed ID: 37945736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and inhibitory activity of deoxy-d-allose amide derivative against plant growth.
    Chowdhury MTI; Ando H; Yanagita RC; Kawanami Y
    Biosci Biotechnol Biochem; 2018 May; 82(5):775-779. PubMed ID: 29513080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-ray structures of Enterobacter cloacae allose-binding protein in complexes with monosaccharides demonstrate its unique recognition mechanism for high affinity to allose.
    Kamitori S
    Biochem Biophys Res Commun; 2023 Nov; 682():187-192. PubMed ID: 37820454
    [TBL] [Abstract][Full Text] [Related]  

  • 56. D-allose: Molecular Pathways and Therapeutic Capacity in Cancer.
    Khajeh S; Ganjavi M; Panahi G; Zare M; Zare M; Tahami SM; Razban V
    Curr Mol Pharmacol; 2023; 16(8):801-810. PubMed ID: 36578261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antitumor Effects of Orally Administered Rare Sugar D-Allose in Bladder Cancer.
    Tohi Y; Taoka R; Zhang X; Matsuoka Y; Yoshihara A; Ibuki E; Haba R; Akimitsu K; Izumori K; Kakehi Y; Sugimoto M
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans.
    Brown CE; Romano AH
    J Bacteriol; 1969 Dec; 100(3):1198-203. PubMed ID: 5361211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of glucose transport by insulin and non-hormonal factors.
    Klip A
    Life Sci; 1982 Dec; 31(23):2537-48. PubMed ID: 6759832
    [No Abstract]   [Full Text] [Related]  

  • 60. Production of D-Allose From D-Allulose Using Commercial Immobilized Glucose Isomerase.
    Choi MN; Shin KC; Kim DW; Kim BJ; Park CS; Yeom SJ; Kim YS
    Front Bioeng Biotechnol; 2021; 9():681253. PubMed ID: 34336800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.