These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22463300)

  • 1. Remote synchronization in star networks.
    Bergner A; Frasca M; Sciuto G; Buscarino A; Ngamga EJ; Fortuna L; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026208. PubMed ID: 22463300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of remote synchronization in complex networks.
    Gambuzza LV; Cardillo A; Fiasconaro A; Fortuna L; Gómez-Gardeñes J; Frasca M
    Chaos; 2013 Dec; 23(4):043103. PubMed ID: 24387542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hub-driven remote synchronization in brain networks.
    Vlasov V; Bifone A
    Sci Rep; 2017 Sep; 7(1):10403. PubMed ID: 28871158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote synchronization reveals network symmetries and functional modules.
    Nicosia V; Valencia M; Chavez M; Díaz-Guilera A; Latora V
    Phys Rev Lett; 2013 Apr; 110(17):174102. PubMed ID: 23679731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.
    Minati L
    Chaos; 2015 Dec; 25(12):123107. PubMed ID: 26723146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase frustration induced remote synchronization.
    Yang Z; Chen D; Xiao Q; Liu Z
    Chaos; 2022 Oct; 32(10):103125. PubMed ID: 36319294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Onset of synchronization in weighted scale-free networks.
    Wang WX; Huang L; Lai YC; Chen G
    Chaos; 2009 Mar; 19(1):013134. PubMed ID: 19334998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fading of remote synchronization in tree networks of Stuart-Landau oscillators.
    Karakaya B; Minati L; Gambuzza LV; Frasca M
    Phys Rev E; 2019 May; 99(5-1):052301. PubMed ID: 31212500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From incoherence to synchronicity in the network Kuramoto model.
    Kalloniatis AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066202. PubMed ID: 21230718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of interconnected networks: the role of connector nodes.
    Aguirre J; Sevilla-Escoboza R; Gutiérrez R; Papo D; Buldú JM
    Phys Rev Lett; 2014 Jun; 112(24):248701. PubMed ID: 24996113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization transition of heterogeneously coupled oscillators on scale-free networks.
    Oh E; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.
    English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG
    Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reexamination of explosive synchronization in scale-free networks: the effect of disassortativity.
    Li P; Zhang K; Xu X; Zhang J; Small M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042803. PubMed ID: 23679469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of assortative mixing in the second-order Kuramoto model.
    Peron TK; Ji P; Rodrigues FA; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052805. PubMed ID: 26066210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variety of regimes of starlike networks of Hénon maps.
    Kuptsov PV; Kuptsova AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042912. PubMed ID: 26565309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph partitions and cluster synchronization in networks of oscillators.
    Schaub MT; O'Clery N; Billeh YN; Delvenne JC; Lambiotte R; Barahona M
    Chaos; 2016 Sep; 26(9):094821. PubMed ID: 27781454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Birth and Stabilization of Phase Clusters by Multiplexing of Adaptive Networks.
    Berner R; Sawicki J; Schöll E
    Phys Rev Lett; 2020 Feb; 124(8):088301. PubMed ID: 32167358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster explosive synchronization in complex networks.
    Ji P; Peron TK; Menck PJ; Rodrigues FA; Kurths J
    Phys Rev Lett; 2013 May; 110(21):218701. PubMed ID: 23745940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis and synchronization processes of Kuramoto oscillators on high-dimensional simplicial complexes with competing simplex-encoded couplings.
    Chutani M; Tadić B; Gupte N
    Phys Rev E; 2021 Sep; 104(3-1):034206. PubMed ID: 34654179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.