These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22463326)

  • 1. Effective viscosity of magnetic nanofluids through capillaries.
    Patel R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026316. PubMed ID: 22463326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on rotational viscosity in magnetic nano fluids.
    Patel R
    Eur Phys J E Soft Matter; 2012 Oct; 35(10):109. PubMed ID: 23096152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of particle clustering on the rheological properties of highly concentrated magnetic nanofluids.
    Susan-Resiga D; Socoliuc V; Boros T; Borbáth T; Marinica O; Han A; Vékás L
    J Colloid Interface Sci; 2012 May; 373(1):110-5. PubMed ID: 22134213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids.
    Nowak J; Wiekhorst F; Trahms L; Odenbach S
    J Phys Condens Matter; 2014 Apr; 26(17):176004. PubMed ID: 24721897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.
    Lenin R; Joy PA
    J Colloid Interface Sci; 2017 Nov; 506():162-168. PubMed ID: 28735189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles.
    Apmann K; Fulmer R; Soto A; Vafaei S
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carrier and particle concentration on ultrasound properties of magnetic nanofluids.
    Patel JK; Parekh K
    Ultrasonics; 2015 Jan; 55():26-32. PubMed ID: 25200700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles.
    Nocera TM; Chen J; Murray CB; Agarwal G
    Nanotechnology; 2012 Dec; 23(49):495704. PubMed ID: 23149438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
    Gul A; Khan I; Shafie S; Khalid A; Khan A
    PLoS One; 2015; 10(11):e0141213. PubMed ID: 26550837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanically driven unsteady non-uniform flow of Copper water and Silver water nanofluids through finite length channel.
    Akbar NS; Butt AW; Tripathi D
    Comput Methods Programs Biomed; 2017 Jul; 146():1-9. PubMed ID: 28688478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids.
    Felicia LJ; Philip J
    Langmuir; 2013 Jan; 29(1):110-20. PubMed ID: 23210900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence for reversible zippering of chains in magnetic nanofluids under external magnetic fields.
    Laskar JM; Philip J; Raj B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041401. PubMed ID: 19905308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism.
    Bhatti MM; Zeeshan A; Ellahi R
    Microvasc Res; 2017 Mar; 110():32-42. PubMed ID: 27908703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Nave S; Zubarev A; Lomenech C; Bashtovoi V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032310. PubMed ID: 24730845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental Study on the Rheological Behavior of Carbon Black-Boron Nitride Hybrid Nanofluids and Development of a New Correlation.
    Michael M; Zagabathuni A; Kumar Pabi S; Ghosh S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3283-3290. PubMed ID: 34739783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative particle dynamics simulations of the viscosities of molten TNT and molten TNT suspensions containing nanoparticles.
    Zhou Y; Li Y; Qian W; He B
    J Mol Model; 2016 Sep; 22(9):216. PubMed ID: 27553301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid.
    Nabeel Rashin M; Hemalatha J
    Ultrasonics; 2014 Mar; 54(3):834-40. PubMed ID: 24188514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid mechanics aspects of magnetic drug targeting.
    Odenbach S
    Biomed Tech (Berl); 2015 Oct; 60(5):477-83. PubMed ID: 26415215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.