These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 22463349)

  • 1. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions.
    Guo B; Ling L; Liu QP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026607. PubMed ID: 22463349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation.
    Tao Y; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026601. PubMed ID: 22463343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions.
    Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013207. PubMed ID: 23944576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Darboux transformation of the generalized mixed nonlinear Schrödinger equation revisited.
    Qiu D; Liu QP
    Chaos; 2020 Dec; 30(12):123111. PubMed ID: 33380042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.
    Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General rogue wave solutions of the coupled Fokas-Lenells equations and non-recursive Darboux transformation.
    Ye Y; Zhou Y; Chen S; Baronio F; Grelu P
    Proc Math Phys Eng Sci; 2019 Apr; 475(2224):20180806. PubMed ID: 31105455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions.
    Chowdury A; Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022919. PubMed ID: 25768581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients.
    Zhong WP; Belić MR; Huang T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):065201. PubMed ID: 23848816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions.
    Yang B; Chen Y
    Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation.
    Wen XY; Yan Z
    Chaos; 2015 Dec; 25(12):123115. PubMed ID: 26723154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Kundu-nonlinear Schrödinger equation: Rogue waves, breathers, and mixed interaction solutions.
    Zhang X; Zhao Q
    Chaos; 2024 May; 34(5):. PubMed ID: 38787312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rogue waves of the Hirota and the Maxwell-Bloch equations.
    Li C; He J; Porsezian K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012913. PubMed ID: 23410410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation, vector solitons, breathers and rogue waves.
    Du Z; Nie Y; Guo Q
    Opt Express; 2023 Dec; 31(25):42507-42523. PubMed ID: 38087623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.