These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22463351)

  • 1. Iterative solution of integral equations on a basis of positive energy Sturmian functions.
    Rawitscher G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026701. PubMed ID: 22463351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of a hybrid finite-element method for solving a scattering Schrödinger equation.
    Power J; Rawitscher G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066707. PubMed ID: 23368078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse scattering theory: renormalization of the Lippmann-Schwinger equation for acoustic scattering in one dimension.
    Kouri DJ; Vijay A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046614. PubMed ID: 12786516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct numerical solution of the Lippmann-Schwinger equation in coordinate space without partial-wave decomposition.
    Kuruoğlu ZC
    Phys Rev E; 2016 Nov; 94(5-1):053303. PubMed ID: 27967101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linear-scaling spectral-element method for computing electrostatic potentials.
    Watson MA; Hirao K
    J Chem Phys; 2008 Nov; 129(18):184107. PubMed ID: 19045386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining partial differential cross sections for low-energy electron photodetachment involving conical intersections using the solution of a Lippmann-Schwinger equation constructed with standard electronic structure techniques.
    Han S; Yarkony DR
    J Chem Phys; 2011 May; 134(17):174104. PubMed ID: 21548670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative Solution Method for the Linearized Poisson-Boltzmann Equation: Indirect Boundary Integral Equation Approach.
    Kim MJ; Yoon BJ
    J Colloid Interface Sci; 2001 Apr; 236(1):173-179. PubMed ID: 11254343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods.
    Vitanov NK; Dimitrova ZI; Vitanov KN
    Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33374871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations.
    Li JL; Cong SL
    J Chem Phys; 2018 Nov; 149(20):204109. PubMed ID: 30501240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
    Temel B; Mills G; Metiu H
    J Phys Chem A; 2008 Mar; 112(12):2728-37. PubMed ID: 18303864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nystrom plus correction method for solving bound-state equations in momentum space.
    Tang A; Norbury JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066703. PubMed ID: 11415254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient reconstruction of dielectric objects based on integral equation approach with Gauss-Newton minimization.
    Tong MS; Yang K; Sheng WT; Zhu ZY
    IEEE Trans Image Process; 2013 Dec; 22(12):4930-7. PubMed ID: 23996559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast volumetric integral-equation solver for high-contrast acoustics.
    Bleszynski E; Bleszynski M; Jaroszewicz T
    J Acoust Soc Am; 2008 Dec; 124(6):3684-93. PubMed ID: 19206796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features.
    Nakatsuji H; Nakashima H
    J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified homotopy perturbation method for solving hypersingular integral equations of the first kind.
    Eshkuvatov ZK; Zulkarnain FS; Nik Long NM; Muminov Z
    Springerplus; 2016; 5(1):1473. PubMed ID: 27652048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.
    Xie J; Huang Q; Yang X
    Springerplus; 2016; 5(1):1149. PubMed ID: 27504247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional momentum-space calculation of three-body bound state in a relativistic Faddeev scheme.
    Hadizadeh MR; Radin M; Mohseni K
    Sci Rep; 2020 Feb; 10(1):1949. PubMed ID: 32029774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of corrugated optical waveguide filters through a direct numerical solution of the coupled Gel'fand-Levitan-Marchenko integral equations.
    Papachristos C; Frangos P
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):1005-12. PubMed ID: 11999954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of three-body resonances above two-body thresholds.
    Papp Z; Darai J; Mezei JZ; Hlousek ZT; Hu C
    Phys Rev Lett; 2005 Apr; 94(14):143201. PubMed ID: 15904063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.