These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22463351)

  • 21. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.
    Poirier B; Salam A
    J Chem Phys; 2004 Jul; 121(4):1704-24. PubMed ID: 15260721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavelet algorithm for solving integral equations of molecular liquids. A test for the reference interaction site model.
    Chuev GN; Fedorov MV
    J Comput Chem; 2004 Aug; 25(11):1369-77. PubMed ID: 15185331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral convergence of the quadrature discretization method in the solution of the Schrodinger and Fokker-Planck equations: comparison with sinc methods.
    Lo J; Shizgal BD
    J Chem Phys; 2006 Nov; 125(19):194108. PubMed ID: 17129090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic voltammetric current functions determined with a prescribed accuracy by the adaptive Huber method for Abel integral equations.
    Bieniasz LK
    Anal Chem; 2008 Dec; 80(24):9659-65. PubMed ID: 19006341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.
    Bellez S; Bourlier C; Kubické G
    J Opt Soc Am A Opt Image Sci Vis; 2015 Mar; 32(3):392-401. PubMed ID: 26366650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An iterative method to solve acoustic scattering problems using a boundary integral equation.
    Rao SM
    J Acoust Soc Am; 2011 Oct; 130(4):1792-8. PubMed ID: 21973332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-dimensional oscillator in time-dependent fields: comparison of some exact and approximate calculations.
    Chuluunbaatar O; Gusev AA; Vinitsky SI; Derbov VL; Galtbayar A; Zhanlav T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017701. PubMed ID: 18764088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extension of Fresnel's formulas for turbid colloidal suspensions: a rigorous treatment.
    Gutiérrez-Reyes E; García-Valenzuela A; Barrera RG
    J Phys Chem B; 2014 Jun; 118(22):6015-31. PubMed ID: 24806832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The quantum-mechanical Coulomb propagator in an L
    Gersbacher R; Broad JT
    Sci Rep; 2021 Sep; 11(1):18997. PubMed ID: 34556673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resolutions of the Coulomb operator. Part III. Reduced-rank Schrödinger equations.
    Limpanuparb T; Gill PM
    Phys Chem Chem Phys; 2009 Oct; 11(40):9176-81. PubMed ID: 19812838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculating particle pair potentials from fluid-state pair correlations: Iterative ornstein-zernike inversion.
    Heinen M
    J Comput Chem; 2018 Jul; 39(20):1531-1543. PubMed ID: 29707796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.
    Bhrawy AH; Alghamdi MA
    ScientificWorldJournal; 2014; 2014():706296. PubMed ID: 25057507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel implementation of a direct method for calculating electrostatic potentials.
    Jusélius J; Sundholm D
    J Chem Phys; 2007 Mar; 126(9):094101. PubMed ID: 17362098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerically complemented analytic method for solving the time-independent one-dimensional Schrödinger equation.
    Selg M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056701. PubMed ID: 11736135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Joint experimental and theoretical study on vibrational excitation cross sections for electron collisions with diacetylene.
    Čurík R; Paidarová I; Allan M; Čársky P
    J Phys Chem A; 2014 Oct; 118(41):9734-44. PubMed ID: 25233039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials.
    Mashayekhi S; Razzaghi M; Tripak O
    ScientificWorldJournal; 2014; 2014():413623. PubMed ID: 24523638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential energy surface for interactions between two hydrogen molecules.
    Patkowski K; Cencek W; Jankowski P; Szalewicz K; Mehl JB; Garberoglio G; Harvey AH
    J Chem Phys; 2008 Sep; 129(9):094304. PubMed ID: 19044867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.