These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22463373)

  • 1. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution.
    Nam JY; Cusick RD; Kim Y; Logan BE
    Environ Sci Technol; 2012 May; 46(9):5240-6. PubMed ID: 22463373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells.
    Cusick RD; Kim Y; Logan BE
    Science; 2012 Mar; 335(6075):1474-7. PubMed ID: 22383807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions.
    Luo X; Nam JY; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    Bioresour Technol; 2013 Jul; 140():399-405. PubMed ID: 23711946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.
    Mehanna M; Kiely PD; Call DF; Logan BE
    Environ Sci Technol; 2010 Dec; 44(24):9578-83. PubMed ID: 21077623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a continuous flow microbial reverse-electrodialysis electrolysis cell using a non-buffered substrate and catholyte effluent addition.
    Hidayat S; Song YH; Park JY
    Bioresour Technol; 2017 Sep; 240():77-83. PubMed ID: 28314667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.
    Luo X; Zhang F; Liu J; Zhang X; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(15):8911-8. PubMed ID: 25010133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution.
    Song YH; Hidayat S; Kim HK; Park JY
    Bioresour Technol; 2016 Jun; 210():56-60. PubMed ID: 26888336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.
    Hatzell MC; Ivanov I; Cusick RD; Zhu X; Logan BE
    Phys Chem Chem Phys; 2014 Jan; 16(4):1632-8. PubMed ID: 24322796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater.
    Watson VJ; Hatzell M; Logan BE
    Bioresour Technol; 2015 Nov; 195():51-6. PubMed ID: 26051523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells.
    Kim Y; Logan BE
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16176-81. PubMed ID: 21930953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetate enhances startup of a Hâ‚‚-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5840-5. PubMed ID: 21671676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy capture from thermolytic solutions and simulated sunlight coupled with hydrogen peroxide production and wastewater remediation.
    Tian H; Wang Y; Pei Y
    Water Res; 2020 Mar; 170():115318. PubMed ID: 31805499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.