These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22463510)

  • 1. Test of the gravitational inverse square law at millimeter ranges.
    Yang SQ; Zhan BF; Wang QL; Shao CG; Tu LC; Tan WH; Luo J
    Phys Rev Lett; 2012 Feb; 108(8):081101. PubMed ID: 22463510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Test of the Gravitational Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation.
    Tan WH; Yang SQ; Shao CG; Li J; Du AB; Zhan BF; Wang QL; Luo PS; Tu LC; Luo J
    Phys Rev Lett; 2016 Apr; 116(13):131101. PubMed ID: 27081964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Null test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum.
    Tu LC; Guan SG; Luo J; Shao CG; Liu LX
    Phys Rev Lett; 2007 May; 98(20):201101. PubMed ID: 17677684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submillimeter test of the gravitational inverse-square law: a search for "large" extra dimensions.
    Hoyle CD; Schmidt U; Heckel BR; Adelberger EG; Gundlach JH; Kapner DJ; Swanson HE
    Phys Rev Lett; 2001 Feb; 86(8):1418-21. PubMed ID: 11290157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Test of the Gravitational Inverse-Square Law at the Centimeter Range.
    Ke J; Luo J; Shao CG; Tan YJ; Tan WH; Yang SQ
    Phys Rev Lett; 2021 May; 126(21):211101. PubMed ID: 34114858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tests of the gravitational inverse-square law below the dark-energy length scale.
    Kapner DJ; Cook TS; Adelberger EG; Gundlach JH; Heckel BR; Hoyle CD; Swanson HE
    Phys Rev Lett; 2007 Jan; 98(2):021101. PubMed ID: 17358595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New experimental limits on non-Newtonian forces in the micrometer range.
    Sushkov AO; Kim WJ; Dalvit DA; Lamoreaux SK
    Phys Rev Lett; 2011 Oct; 107(17):171101. PubMed ID: 22107498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Test of the Gravitational 1/r^{2} Law at Separations down to 52  μm.
    Lee JG; Adelberger EG; Cook TS; Fleischer SM; Heckel BR
    Phys Rev Lett; 2020 Mar; 124(10):101101. PubMed ID: 32216404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement for Testing the Gravitational Inverse-Square Law at the Submillimeter Range.
    Tan WH; Du AB; Dong WC; Yang SQ; Shao CG; Guan SG; Wang QL; Zhan BF; Luo PS; Tu LC; Luo J
    Phys Rev Lett; 2020 Feb; 124(5):051301. PubMed ID: 32083933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity.
    Lucchesi DM; Peron R
    Phys Rev Lett; 2010 Dec; 105(23):231103. PubMed ID: 21231446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of gravitational and thermal effects in a liquid-actuated torsion pendulum.
    Allocca A; Bassan M; De Laurentis M; De Rosa R; Di Fiore L; D'Onofrio L; Errico L; Garufi F; Grado A; Hoyle CD; Lucchesi D; Minenkov Y; Passeggio G; Pucacco G; Sequino V; Tarallo O; Trozzo L; Visco M
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37909837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weakly bound molecules as sensors of new gravitylike forces.
    Borkowski M; Buchachenko AA; Ciuryło R; Julienne PS; Yamada H; Kikuchi Y; Takasu Y; Takahashi Y
    Sci Rep; 2019 Oct; 9(1):14807. PubMed ID: 31616025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower limit to the scale of an effective quantum theory of gravitation.
    Caldwell RR; Grin D
    Phys Rev Lett; 2008 Jan; 100(3):031301. PubMed ID: 18232959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision measurement of the Newtonian gravitational constant using cold atoms.
    Rosi G; Sorrentino F; Cacciapuoti L; Prevedelli M; Tino GM
    Nature; 2014 Jun; 510(7506):518-21. PubMed ID: 24965653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q Milligram-Scale Monolithic Pendulum for Quantum-Limited Gravity Measurements.
    Cataño-Lopez SB; Santiago-Condori JG; Edamatsu K; Matsumoto N
    Phys Rev Lett; 2020 Jun; 124(22):221102. PubMed ID: 32567925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new torsion pendulum for gravitational reference sensor technology development.
    Ciani G; Chilton A; Apple S; Olatunde T; Aitken M; Mueller G; Conklin JW
    Rev Sci Instrum; 2017 Jun; 88(6):064502. PubMed ID: 28667997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White Dwarf Critical Tests for Modified Gravity.
    Jain RK; Kouvaris C; Nielsen NG
    Phys Rev Lett; 2016 Apr; 116(15):151103. PubMed ID: 27127952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements.
    Matsumoto N; Cataño-Lopez SB; Sugawara M; Suzuki S; Abe N; Komori K; Michimura Y; Aso Y; Edamatsu K
    Phys Rev Lett; 2019 Feb; 122(7):071101. PubMed ID: 30848624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The attracting masses in measurements of G: an overview of physical characteristics and performance.
    Gillies GT; Unnikrishnan CS
    Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2026):. PubMed ID: 25201999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraining the Symmetron Model with the HUST-2020 Torsion Pendulum Experiment.
    Zhao YL; Tan YJ; Wu WH; Luo J; Shao CG
    Phys Rev Lett; 2022 Sep; 129(14):141101. PubMed ID: 36240400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.