These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22463617)
1. Inverse Ising inference using all the data. Aurell E; Ekeberg M Phys Rev Lett; 2012 Mar; 108(9):090201. PubMed ID: 22463617 [TBL] [Abstract][Full Text] [Related]
2. Maximum likelihood reconstruction for Ising models with asynchronous updates. Zeng HL; Alava M; Aurell E; Hertz J; Roudi Y Phys Rev Lett; 2013 May; 110(21):210601. PubMed ID: 23745850 [TBL] [Abstract][Full Text] [Related]
3. Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models. Barton JP; Cocco S; De Leonardis E; Monasson R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012132. PubMed ID: 25122276 [TBL] [Abstract][Full Text] [Related]
5. Effective ergodicity in single-spin-flip dynamics. Süzen M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032141. PubMed ID: 25314429 [TBL] [Abstract][Full Text] [Related]
6. Static and dynamic structure factors in three-dimensional randomly diluted Ising models. Calabrese P; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021126. PubMed ID: 18352006 [TBL] [Abstract][Full Text] [Related]
7. How do we draw inference from "negative" studies? Schriger DL Ann Emerg Med; 2003 Jan; 41(1):69-71. PubMed ID: 12514684 [No Abstract] [Full Text] [Related]
8. Biases in inverse Ising estimates of near-critical behavior. Kloucek MB; Machon T; Kajimura S; Royall CP; Masuda N; Turci F Phys Rev E; 2023 Jul; 108(1-1):014109. PubMed ID: 37583208 [TBL] [Abstract][Full Text] [Related]
9. Inference of the sparse kinetic Ising model using the decimation method. Decelle A; Zhang P Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052136. PubMed ID: 26066148 [TBL] [Abstract][Full Text] [Related]
10. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems. Nakamura T Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399 [TBL] [Abstract][Full Text] [Related]
11. Higher-order likelihood inference in meta-analysis and meta-regression. Guolo A Stat Med; 2012 Feb; 31(4):313-27. PubMed ID: 22173666 [TBL] [Abstract][Full Text] [Related]
12. Reconstructing the Hopfield network as an inverse Ising problem. Huang H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036104. PubMed ID: 20365812 [TBL] [Abstract][Full Text] [Related]
13. Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model. Yucesoy B; Katzgraber HG; Machta J Phys Rev Lett; 2012 Oct; 109(17):177204. PubMed ID: 23215219 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo study of mixed-spin S = (1/2, 1) Ising ferrimagnets. Selke W; Oitmaa J J Phys Condens Matter; 2010 Feb; 22(7):076004. PubMed ID: 21386401 [TBL] [Abstract][Full Text] [Related]
15. Counting solutions from finite samplings. Huang H; Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026118. PubMed ID: 22463290 [TBL] [Abstract][Full Text] [Related]
16. Network inference using asynchronously updated kinetic Ising model. Zeng HL; Aurell E; Alava M; Mahmoudi H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041135. PubMed ID: 21599143 [TBL] [Abstract][Full Text] [Related]
17. Mean-field theory for the inverse Ising problem at low temperatures. Nguyen HC; Berg J Phys Rev Lett; 2012 Aug; 109(5):050602. PubMed ID: 23006160 [TBL] [Abstract][Full Text] [Related]
18. Optimal structure and parameter learning of Ising models. Lokhov AY; Vuffray M; Misra S; Chertkov M Sci Adv; 2018 Mar; 4(3):e1700791. PubMed ID: 29556527 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo study of degenerate ground states and residual entropy in a frustrated honeycomb lattice Ising model. Andrews S; De Sterck H; Inglis S; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041127. PubMed ID: 19518193 [TBL] [Abstract][Full Text] [Related]
20. Relations between short-range and long-range Ising models. Angelini MC; Parisi G; Ricci-Tersenghi F Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062120. PubMed ID: 25019738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]