These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22463711)

  • 1. Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru.
    Verones F; Bartl K; Pfister S; Jiménez Vílchez R; Hellweg S
    Environ Sci Technol; 2012 May; 46(9):4966-74. PubMed ID: 22463711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment based evaluation of regional impacts from agricultural production at the Peruvian coast.
    Bartl K; Verones F; Hellweg S
    Environ Sci Technol; 2012 Sep; 46(18):9872-80. PubMed ID: 22894858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying area changes of internationally important wetlands due to water consumption in LCA.
    Verones F; Pfister S; Hellweg S
    Environ Sci Technol; 2013 Sep; 47(17):9799-807. PubMed ID: 23930946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling hydrological effects of wetland restoration: a differentiated view.
    Staes J; Rubarenzya MH; Meire P; Willems P
    Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projected water consumption in future global agriculture: scenarios and related impacts.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Sci Total Environ; 2011 Sep; 409(20):4206-16. PubMed ID: 21840571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.
    Pasini S; Torresan S; Rizzi J; Zabeo A; Critto A; Marcomini A
    Sci Total Environ; 2012 Dec; 440():219-35. PubMed ID: 22863150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiversity impacts from salinity increase in a coastal wetland.
    Amores MJ; Verones F; Raptis C; Juraske R; Pfister S; Stoessel F; Antón A; Castells F; Hellweg S
    Environ Sci Technol; 2013 Jun; 47(12):6384-92. PubMed ID: 23597228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multicriteria model for planning agricultural regions within a context of groundwater rational management.
    Manos B; Papathanasiou J; Bournaris T; Voudouris K
    J Environ Manage; 2010 Jul; 91(7):1593-600. PubMed ID: 20371401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland.
    Dimitriou E; Karaouzas I; Sarantakos K; Zacharias I; Bogdanos K; Diapoulis A
    J Environ Manage; 2008 Aug; 88(3):526-38. PubMed ID: 17499908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.
    Moiwo JP; Lu W; Tao F
    Water Sci Technol; 2012; 65(9):1606-14. PubMed ID: 22508123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the ecohydrology of the Sakumo wetland in Ghana.
    Nonterah C; Xu Y; Osae S; Akiti TT; Dampare SB
    Environ Monit Assess; 2015 Nov; 187(11):671. PubMed ID: 26439124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water use conflict between wetland and agriculture.
    Zou Y; Duan X; Xue Z; E M; Sun M; Lu X; Jiang M; Yu X
    J Environ Manage; 2018 Oct; 224():140-146. PubMed ID: 30036808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keeping wetlands wet in the western United States: adaptations to drought in agriculture-dominated human-natural systems.
    Downard R; Endter-Wada J
    J Environ Manage; 2013 Dec; 131():394-406. PubMed ID: 24211568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Environ Sci Technol; 2011 Jul; 45(13):5761-8. PubMed ID: 21644578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater potential zoning of a peri-urban wetland of south Bengal Basin, India.
    Sahu P; Sikdar PK
    Environ Monit Assess; 2011 Mar; 174(1-4):119-34. PubMed ID: 20437269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of game theory for a groundwater conflict in Mexico.
    Raquel S; Ferenc S; Emery C; Abraham R
    J Environ Manage; 2007 Sep; 84(4):560-71. PubMed ID: 16996197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes.
    Moreno-Mateos D; Comin FA
    J Environ Manage; 2010 Nov; 91(11):2087-95. PubMed ID: 20580153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments.
    Moreno-Mateos D; Mander U; Comín FA; Pedrocchi C; Uuemaa E
    J Environ Qual; 2008; 37(6):2170-80. PubMed ID: 18948470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irrigation effects in the northern lake states: Wisconsin central sands revisited.
    Kraft GJ; Clancy K; Mechenich DJ; Haucke J
    Ground Water; 2012; 50(2):308-18. PubMed ID: 21707615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.