BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 22463850)

  • 1. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.
    Lowry GV; Espinasse BP; Badireddy AR; Richardson CJ; Reinsch BC; Bryant LD; Bone AJ; Deonarine A; Chae S; Therezien M; Colman BP; Hsu-Kim H; Bernhardt ES; Matson CW; Wiesner MR
    Environ Sci Technol; 2012 Jul; 46(13):7027-36. PubMed ID: 22463850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
    Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW
    Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation.
    Bone AJ; Colman BP; Gondikas AP; Newton KM; Harrold KH; Cory RM; Unrine JM; Klaine SJ; Matson CW; Di Giulio RT
    Environ Sci Technol; 2012 Jul; 46(13):6925-33. PubMed ID: 22680837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling nanosilver transformations in freshwater sediments.
    Dale AL; Lowry GV; Casman EA
    Environ Sci Technol; 2013 Nov; 47(22):12920-8. PubMed ID: 24147627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ chemical transformations of silver nanoparticles along the water-sediment continuum.
    Khaksar M; Jolley DF; Sekine R; Vasilev K; Johannessen B; Donner E; Lombi E
    Environ Sci Technol; 2015 Jan; 49(1):318-25. PubMed ID: 25405257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental Fate of Silver Nanoparticles in Boreal Lake Ecosystems.
    Furtado LM; Norman BC; Xenopoulos MA; Frost PC; Metcalfe CD; Hintelmann H
    Environ Sci Technol; 2015 Jul; 49(14):8441-50. PubMed ID: 26061763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.
    Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN
    Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments.
    Bao S; Wang H; Zhang W; Xie Z; Fang T
    Environ Pollut; 2016 Dec; 219():696-704. PubMed ID: 27396616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments.
    Rajala JE; Vehniäinen ER; Väisänen A; Kukkonen JVK
    Environ Toxicol Chem; 2017 Oct; 36(10):2593-2601. PubMed ID: 28304113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.
    Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG
    Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobility of capped silver nanoparticles under environmentally relevant conditions.
    Thio BJ; Montes MO; Mahmoud MA; Lee DW; Zhou D; Keller AA
    Environ Sci Technol; 2012 Jul; 46(13):6985-91. PubMed ID: 22133047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms.
    Stegemeier JP; Avellan A; Lowry GV
    Environ Sci Technol; 2017 Nov; 51(21):12114-12122. PubMed ID: 29017014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products.
    Cleveland D; Long SE; Pennington PL; Cooper E; Fulton MH; Scott GI; Brewer T; Davis J; Petersen EJ; Wood L
    Sci Total Environ; 2012 Apr; 421-422():267-72. PubMed ID: 22369864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residence time effects on phase transformation of nanosilver in reduced soils.
    Rick VandeVoort A; Tappero R; Arai Y
    Environ Sci Pollut Res Int; 2014; 21(13):7828-37. PubMed ID: 24638840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental transformations of silver nanoparticles: impact on stability and toxicity.
    Levard C; Hotze EM; Lowry GV; Brown GE
    Environ Sci Technol; 2012 Jul; 46(13):6900-14. PubMed ID: 22339502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition.
    Reinsch BC; Levard C; Li Z; Ma R; Wise A; Gregory KB; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jul; 46(13):6992-7000. PubMed ID: 22296331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.