BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 22463850)

  • 21. Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus.
    Coleman JG; Kennedy AJ; Bednar AJ; Ranville JF; Laird JG; Harmon AR; Hayes CA; Gray EP; Higgins CP; Lotufo G; Steevens JA
    Environ Toxicol Chem; 2013 Sep; 32(9):2069-77. PubMed ID: 23686570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.
    Chinnapongse SL; MacCuspie RI; Hackley VA
    Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.
    Rahmatpour S; Shirvani M; Mosaddeghi MR; Bazarganipour M
    J Environ Manage; 2017 May; 193():136-145. PubMed ID: 28213297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.
    Yin L; Colman BP; McGill BM; Wright JP; Bernhardt ES
    PLoS One; 2012; 7(10):e47674. PubMed ID: 23091638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms.
    Milam CD; Bouldin JL; Farris JL; Schulz R; Moore MT; Bennett ER; Cooper CM; Smith S
    Environ Toxicol; 2004 Oct; 19(5):471-9. PubMed ID: 15352263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles.
    Ellis LA; Baalousha M; Valsami-Jones E; Lead JR
    Chemosphere; 2018 Jan; 191():616-625. PubMed ID: 29073569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging and soil organic matter content affect the fate of silver nanoparticles in soil.
    Coutris C; Joner EJ; Oughton DH
    Sci Total Environ; 2012 Mar; 420():327-33. PubMed ID: 22326137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal mechanisms and fate of insecticides in constructed wetlands.
    Budd R; O'geen A; Goh KS; Bondarenko S; Gan J
    Chemosphere; 2011 Jun; 83(11):1581-7. PubMed ID: 21296378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity.
    Salari Joo H; Kalbassi MR; Yu IJ; Lee JH; Johari SA
    Aquat Toxicol; 2013 Sep; 140-141():398-406. PubMed ID: 23907091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue distribution of Ag and oxidative stress responses in the freshwater snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles.
    Bao S; Huang J; Liu X; Tang W; Fang T
    Sci Total Environ; 2018 Dec; 644():736-746. PubMed ID: 29990921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor.
    García-Alonso J; Khan FR; Misra SK; Turmaine M; Smith BD; Rainbow PS; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2011 May; 45(10):4630-6. PubMed ID: 21517067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trophodynamics and distribution of silver in a Patagonia mountain lake.
    Revenga JE; Campbell LM; Kyser K; Klassen K; Arribére MA; Ribeiro Guevara S
    Chemosphere; 2011 Apr; 83(3):265-70. PubMed ID: 21216430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of silver nanoparticles (AgNPs) in soil.
    Sagee O; Dror I; Berkowitz B
    Chemosphere; 2012 Jul; 88(5):670-5. PubMed ID: 22516207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silver nanoparticles: behaviour and effects in the aquatic environment.
    Fabrega J; Luoma SN; Tyler CR; Galloway TS; Lead JR
    Environ Int; 2011 Feb; 37(2):517-31. PubMed ID: 21159383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods.
    Zhao J; Wang X; Hoang SA; Bolan NS; Kirkham MB; Liu J; Xia X; Li Y
    J Hazard Mater; 2021 Sep; 418():126368. PubMed ID: 34329024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials.
    Kwok KW; Auffan M; Badireddy AR; Nelson CM; Wiesner MR; Chilkoti A; Liu J; Marinakos SM; Hinton DE
    Aquat Toxicol; 2012 Sep; 120-121():59-66. PubMed ID: 22634717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endosulfan application to a stream mesocosm: studies on fate, uptake into passive samplers and caged toxicity test with the fish M. ambigua.
    Pablo F; Hyne RV
    Arch Environ Contam Toxicol; 2009 Apr; 56(3):525-35. PubMed ID: 18937005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.